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ABSTRACT:  

Myelodysplastic syndromes (MDS) are acquired heterogeneous hematopoietic 

clonal disorders primarily seen in the adult and elderly populations that presents a variety 

of cellular morphologies in cell lineages, varying prognoses, and differences in overall 

survival (OS) between individual patients.  The occurrence of MDS in the pediatric and 

young adult population, or those between the ages of 0 and 29, is slowly on the rise.  

Pediatric and elderly cases exhibit diverse cytogenetic findings with differences in OS.  

The characterization of the genetic landscape of pediatric MDS is limited and most studies 

detailing genetic changes have been conducted in adult MDS cases.  In order to aid in 

therapeutic stratification for pediatric cases, the key genes involved in hematopoietic 

transformation must be deciphered.  This study utilized comprehensive analysis including 

cytogenetic karyotyping, FISH, and high-resolution microarray techniques.  With the use 

of multiple techniques, this study confirmed the rarity of MDS in the pediatric population, 

characterized the frequencies of hallmark cytogenetic abnormalities, and identified key 

aberrations observed at the genetic level.  With the use of microarray, we were able to 

detect genomic aberrations in 33 genes including novel copy number changes in more 

than one case in the PRDM16, IRF4, MYH11, ALK, CDKN2B, PAX5, EXT2, and ERCC4 

genes.  The results from this study prove the importance of comprehensive testing utilizing 

a variety of techniques in distinguishing the most accurate genetic landscape of pediatric 
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MDS.  This information can be used to better equip the medical community in accurately 

diagnosing and providing prognostic implications for therapy and treatment. 
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INTRODUCTION 

Myelodysplastic syndromes (MDS) are acquired hematopoietic clonal disorders 

primarily seen in the adult and elderly populations with an overall estimate of incidence at 

14,000 new cases per year (Siegel, Ma et al. 2014).  This group of heterogeneous bone 

marrow syndromes are characterized as stem-cell disorders with varying degrees of 

overall reduction in blood cell production.  The heterogeneous nature of MDS presents as 

a variety of cellular morphologies in a number of myeloid cell lineages, varying prognoses, 

and differences in overall survival (OS) between individual patients.  The majority of 

patients present a normocellular or hyperplastic bone marrow, however, up to 20% of 

patients have shown hypoplastic and mylofibrotic bone marrow (Aul, Bowen et al. 1998).  

The overall numbers of myeloid cell lineages vary and morphological aberrations are 

observed in the clonal origin of hematopoietic cells.    Hypercellular bone marrow displays 

morphological dysplasia and ineffective hematopoiesis in at least one of the three myeloid 

lineages (Aul, Bowen et al. 1998, Tefferi, Vardiman 2009, Whichard, Sarkar et al. 2010).  

Cellular bone marrow is unable to produce and deliver adequate numbers of mature cells 

to the peripheral blood during ineffective hematopoiesis.   

Even though MDS is predominantly a disease of older populations, the frequency 

in the pediatric and young adult population, or those between the ages of 0 and 29, is 

slowly on the rise.  Myelodysplastic syndromes in pediatric cases present diverse 

cytogenetic findings and differs in OS in comparison with the elderly.  The amount of 

information on this rare group is limited.  In order to aid in therapeutic stratification for 

pediatric patients more information is needed (Glaubach, Robinson et al. 2014, Ganapathi, 

Schafernak et al. 2015) .  The use of high-resolution techniques including microarray can 

help with deciphering possible key aberrations that are observed at the genetic level.  
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Current molecular genetic studies have detailed key genes involved in adult MDS and the 

present study will be useful to compare similarities and differences between the elderly 

and pediatric populations (Silva, Maschietto et al. 2013, Shih, Abdel-Wahab et al. 2012, 

Bejar 2014).  

The onset of this disease can be relatively benign in the form of refractory anemia 

(RA), typically observed as a decrease in red blood cells, but causes a decrease in the 

production of healthy platelets, red and white blood cells (Aul, Bowen et al. 1998, Tefferi, 

Vardiman 2009, Corey, Minden et al. 2007, Akhtari 2011).  Red blood cells (RBC) transport 

oxygen to the rest of the body and brings carbon dioxide to the lungs.  Having too few 

RBC, anemia, leaves the patient feeling tired and weak and can cause shortness of 

breath.  White blood cells (WBC) are important as a line of defense against infection.  The 

two major types are lymphocytes, which make antibodies, and granulocytes that destroy 

bacteria.  Having too few WBC leads to severe infections in the body, or neutropenia.  The 

small fragments of the megakaryocyte that enter the blood stream are called platelets.  

These are essential for blood clotting and without them can result in thrombocytopenia, 

which causes abnormal bleeding, and bruising (Brunning, RD. Bennett, JM. Flandrin, G. 

Matutes, E. Head, D. Vardiman, JW. 2001).   

Myelodysplastic syndromes can be diagnosed as primary, or de novo MDS, or 

secondary MDS from past chemo- or radiation therapy or exposure to certain chemicals 

and heavy metals.  Both result in dysplastic blood and bone marrow cells and cytogenetic 

abnormalities are observed in over 50% of MDS cases (Corey, Minden et al. 2007, 

Flandrin 2002).  Hallmark genetic aberrations detected by conventional karyotyping or 

fluorescence in situ hybridization (FISH) include -5/del(5q), -7/del(7q), +8, or del(20q) 

(Cherian, Bagg 2006).  The classification of these genetic findings has prognostic 
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implications and helps to stratify a more individualized treatment plan for MDS patients 

(Haase, Germing et al. 2007).   

Hematopoiesis 

Normal hematopoiesis gives rise to progressively more differentiated progenitor 

cells, which eventually differentiate into mature blood cells (Lobo, Shimono et al. 2007, 

Orkin, Zon 2008).  The fundamental properties of hematopoiesis include proliferation, loss, 

and differentiation resulting in the development of over 500 billion blood cells per day.  

Normal adult hematopoietic stem cells (HSCs) are the common ancestors of all blood cells 

and are needed to maintain or repair their host tissue.  These cell types have two functions 

of division that include symmetrical division, which yields two stem cells or two 

differentiated daughter cells, and asymmetrical division into either another stem cell or a 

more specialized cell.  Self-renewal of HSCs produces a replicate stem cell that typically 

has the same development and replication fate.  The production of specialized daughter 

cells is decided from biochemical signals and transcription factors and the HSC has the 

potential to generate cell types of each lineage (Kondo 2010, Whichard, Sarkar et al. 2010, 

Wilson, Laurenti et al. 2008).   

During normal hematopoiesis the blood stem cell, or immature blast cells, make 

up 5% or less of the cells in the bone marrow and will develop into one of the three healthy 

blood cells (red blood cells, platelets, or white blood cells) from a homeostatic balance 

between proliferation, differentiation, and apoptosis (Figure 1a).  The normal system 

efficiently replenishes the body when hematological stresses are encountered which 

includes infection and blood loss (Passegue, Wagers et al. 2005).  Hematopoietic 

disorders, including MDS, are acquired when normal development is disrupted and blast 

cells lose proper function the way they should and die in the bone marrow or soon after  
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entering the blood.  Cellular bone marrow is then unable to produce and deliver adequate 

numbers of mature cells to the peripheral blood.  Ineffective hematopoiesis presents a 

loss of homeostatic balance between proliferation, differentiation, and apoptosis leading 

to cell death of many precursor cells giving an overall unbalance in cell production.  A 

varying degree of cellular dysplasia and an overall reduction in RBC, platelets, and WBC 

is produced (Figure 1b).  This results in a higher propensity of infection, anemia, bleeding 

and the evolvement to acute myeloid leukemia (AML) (Corey, Minden et al. 2007, Tefferi, 

Vardiman 2009, Akhtari 2011).   

Pathogenesis of MDS 

Even though morphological variation exists, the clonal disorder of MDS progresses 

through the same multistep process of tumorigenesis of initiation, promotion, and 

malignant transformation.  A single or even multiple initial genetic insults occur to the 

predominantly quiescent HSCs and initiates the cell into an early lesion state (Wilson, 

Laurenti et al. 2008, Fozza, Longinotti 2013).  The exact nature of the initial insult has yet 

to be deciphered.  Promotion or progression of the abnormal clones occur with abnormally 

high rates of apoptosis on the normal cells and leads to transformation.  The 

transformation stage has an apoptotic paradox of excessive cell death during initiation and 

promotion stages followed by a loss of apoptotic function that increases cell survival and 

proliferation of malignant cells.  Over time, MDS has the ability to progress to a malignant 

transformation and ultimately evolve to AML (Davids, Steensma 2010, Kulasekararaj, 

Mohamedali et al. 2013).   

Initiation and Promotion 

The cancer stem cell theory originated from studies showing that some aspects of 

normal cell growth and differentiation are observed in tumor growth.  Malignant cells arise 
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from long-lived stem cells with the capability of self-renewal but unlike normal expansion, 

uncontrolled growth is not prevented (Lobo, Shimono et al. 2007).  It was once believed 

that cancer stem cells were derived from normal stem cells but new studies show that 

progenitor cells can also gain normal stem cell attributes of long life and self-renewal.  

Leukemic stem cells have been shown to originate from progenitor cells with additional 

mutations that gives them the ability to self-renew.  A single or multiple initial genetic insult 

event to either type of stem cell leads to the tumor promotion stage of clonal expansion of 

abnormal clones.  These clones have abnormally high rates of apoptosis downstream in 

later progenitors due to their longevity and therefore their ability to accumulate genetic 

changes (Wang, Dick 2005, Chatterjee, Choudhry 2013).   

The exact mechanism for tumorigenesis is still unknown but many studies have 

suggested that the microenvironment plays a role (Raaijmakers 2012).  The 

microenvironment of bone marrow elements has been shown to be disorganized and all 

lineages in MDS patients can become affected.  These elements subject stem cells to a 

range of stimuli including cell-cell interactions, contact to extracellular matrix molecules, 

and exposure to growth stimulatory and inhibitory cytokines.  These growth factors not 

only stimulate proliferation but also support cell survival, and their loss presents an 

increase in apoptosis (Arai, Hirao et al. 2005, Aul, Bowen et al. 1998).  Mutations of the 

genes within the stem cell niche causes failure of bone marrow stem cell maintenance 

and a thorough understanding of these aberrations can aid in potential targeted therapies 

for MDS patients (Wilson, Trumpp 2006).    

Transformation 

After the stages of initiation and promotion, MDS can then progress to a malignant 

transformation increasing the amount of leukemic blast cells and ultimately evolving to 
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AML.  Clonal expansion of MDS show changes of dysplasia, ineffective hematopoiesis, 

cellular dysfunction, and defective differentiation (Aul, Bowen et al. 1998).   

Dysplasia in MDS can lead to morphological changes of the immature blast cell, 

which leads to changes in colony formation and the ability to produce a healthy adherent 

cell layer.  Poor colony formation results in an abnormal increase in cluster formation.  

Dysplasia from MDS also causes abnormal megakaryopoiesis, or platelet production, 

which leads to the presence of micromegakaryocytes, small platelet precursors.  These 

are associated with large atypical platelets and is often associated with myeloproliferative 

disorders (MPD) (Howe, Porwit-MacDonald et al. 2004, Sun, Konoplev et al. 2011, Orazi, 

Germing 2008). 

In ineffective hematopoiesis, apoptosis and cell death of many cell precursors 

occurs, limiting production of healthy blood cells.  Furthermore, increased cell proliferation 

concurrently with reduced cell differentiation leads to a net increase in the number of 

precursor cells despite higher rates of apoptosis (Ginzburg, Rivella 2011).  Mutations in 

cell division and signaling systems that regulate specialization leads to abnormal 

proliferations and typically results in the aberrant cell being eliminated but cancers can 

occur when these mutations escape destruction and accumulate.  Typically, short-lived 

cells, like differentiated progeny, are less prone to these mutations in comparison to the 

longer-lived stem cell populations (Lobo, Shimono et al. 2007).   

Cellular dysfunction has been attributed to the progression of abnormal MDS 

clones slowly replacing normal stems cells through excessive apoptosis.  Defective 

maturation including delayed maturation leads to an increase in non-erythroid lineages 

and an increase in early myeloid cells.  In spite of normal and hypercellular bone marrow, 

persistent premature cell death has been shown in bone marrow biopsies.  Numerous 
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DNA breaks and increased engulfment by macrophage has been observed in bone 

marrow and leads to an ineffective production of red blood cells and the suppression of 

normal stem cell differentiation (Aul, Bowen et al. 1998).  In some MDS subtypes, cytotoxic 

T-cells have been found to be the primary inhibitor of hematopoietic precursors by 

increasing the frequency of apoptosis (Fozza, Longinotti 2013).  Malignant transformation 

of MDS to AML is caused from an apoptosis paradox.  The excessive cell suicide during 

initiation and promotion stages, now leads to the uncontrolled growth of malignant cells 

with increased cell survival and proliferation.   Cells from AML cases have been shown to 

contain significantly reduced apoptotic behaviors especially when certain chromosome 

aberrations are present.  For example, in 5q deletions, tumor aggressiveness is increased 

through the inactivation of the tumor suppressor gene IRF-1 found in the 5q critical region 

which has been attributed to the reduction or complete loss of apoptotic function 

(Pitchford, Hettinga et al. 2010, Mallo, Arenillas et al. 2008, List, Dewald et al. 2006, Aul, 

Bowen et al. 1998).   

Lastly, defective differentiation suppresses normal stem cell differentiation.  

Normal differentiation uses unique hematopoietic cells that are able to self-renew as well 

as generate all cells of the hematopoietic system.  They give rise to multipotent progenitors 

and lineage-restricted progenitors that have a limited capacity to divide.  On the other 

hand, leukemic stem cells have been hypothesized to originate from immature 

hematopoietic progenitors or even the HSC and will give rise to clonogenic leukemic 

progenitors that differentiate into leukemic blasts and more differentiated progeny (Tan, 

Park et al. 2006).   
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Epidemiology of MDS 

The onset of MDS can be relatively benign in the form of refractory anemia and 

can show signs of fatigue, shortness of breath, pale skin, and easy bruising or bleeding.  

Diagnosis of MDS consists of blood and bone marrow tests.  Lower than usual numbers 

of red blood cells, neutrophils, and platelets is frequently seen in MDS.  Bone marrow 

aspirates are biopsied and sent for more extensive genetic tests and diagnosis of MDS 

occurs when an excessive amount of blast cells are present, chromosomal abnormalities 

typical for MDS are observed, and/or changes in the structure or form of the bone marrow 

cells (Brunning, Bennett, et al. 2001, Cherian, Bagg 2006). 

Myelodysplastic syndromes are typically described as a geriatric disorder due to 

the gradual accumulation of random genetic damage from endogenous and exogenous 

carcinogens over a lifetime.  The risk of MDS increases with age; 3.5 to 12.6 adults per 

100,000 over the age of 60; 15 to 50 per 100,000 over 70 years; and 89 per 100,000 for 

the over 80 populations with men having a slightly higher risk than women with a 1.2 ratio 

(Corey, Minden et al. 2007, Rollison, Howlader et al. 2008).  As of 2014, the estimates 

from Medicare claims show that MDS is one of the top 10 adult neoplasms with at least 

40,000 to 50,000 patients per year being diagnosed (Steensma, Komrokji et al. 2014, 

Goldberg, Chen et al. 2010).  

Even though MDS is one of the most prevalent bone marrow disorders in the older 

populations; it is less frequently diagnosed in those under the age of 29 years. The 

incidence in the pediatric population, or those between the ages of 0 and 18, is 1.8 to 4 

cases of MDS per million children per year (Rau, Shreedhara et al. 2012, Hofmann 

2015a).  Since this malignancy is less frequently observed, there is limited information 

regarding the diagnostic criteria for MDS in the younger population and in turn even less 
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information on the specific subtypes and prognostic implications in this group (Glaubach, 

Robinson et al. 2014, Hofmann 2015b).   Younger patients presenting MDS are on the 

rise and typically present diverse features in comparison to the adult population including 

a more unfavorable prognosis and a higher propensity to evolve to malignant neoplasms 

including AML (Aul, Bowen et al. 1998, Tefferi, Vardiman 2009, Corey, Minden et al. 2007, 

Akhtari 2011, Mandel, Dror et al. 2002, Hofmann 2015a, Gohring, Michalova et al. 2010).  

Until the 2003 World Health Organization (WHO) Pediatric modification, children were 

categorized with the adult population.  This was due to the limited information on any real 

differences between the two populations that resulted in the younger population receiving 

the same treatments and similar therapy strategies were utilized as in the older population 

(Hasle, Niemeyer et al. 2003).   

With limited cases and a lack of consensus on when to diagnose MDS in pediatric 

patients, classifying new and individualized diagnostic and prognostic criteria for these 

individuals was quite difficult.  With more research, some key differences between the 

adult and pediatric MDS populations have been determined.  Refractory anemia with ring 

sideroblasts is quite common in adults and is very rare in younger patients and isolated 

anemia is one of the major presentations in adults while thrombocytopenia (TCP) and 

neutropenia (NEU) are the major presentations in pediatric populations (Chatterjee, 

Choudhry 2013). The most frequent cytogenetic abnormality of isolated deleted 5q 

observed in the adult population is rarely seen in pediatric MDS.  In addition, the median 

age of MDS presentation in adults is 70 with primary MDS being the most common while 

in the pediatric population the median age is 7 years and the most common type is 

secondary or therapy-related MDS (Glaubach, Robinson et al. 2014, Niemeyer, Baumann 

2008).   
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Since the etiology of MDS has been linked to age related alterations, including 

certain epigenetic factors like methylation, criteria on the vast number of older patients 

with this disease is understood (Shih, Abdel-Wahab et al. 2012).  The reasons for 

occurrence of MDS in pediatric and young adult patients, or those between 0 and 29 years 

of age, has yet to be fully understood.  Studies show a strong correlation to certain genetic 

disorders that are associated with a future MDS occurrence including trisomy 21 (Down 

syndrome), Fanconi’s anemia, and inherited bone marrow failure disorder; yet biological 

and clinical features are different in non-Down children with MDS and not all pediatric MDS 

patients have one of these constitutional disorders (Rau, Shreedhara et al. 2012, Stary, 

Baumann et al. 2008, Glaubach, Robinson et al. 2014, Cantor 2015).  Therefore, more 

research is needed in order to decipher what triggers the ineffective hematopoiesis.  When 

we can accurately diagnose and determine the true characteristics of pediatric MDS, we 

will then be able to prepare a more individualized therapeutic strategy for the younger 

population. 

Classification of MDS 

Currently, MDS in the pediatric and adolescent populations is classified as either 

primary MDS, or de novo MDS, and secondary MDS (Rau, Shreedhara et al. 2012).  

Primary MDS is subdivided into refractory cytopenia of childhood (RCC), refractory 

anemia with excess blasts (RAEB) and RAEB in transformation (RAEB-t) (Niemeyer, 

Baumann 2011).  Diagnosis is typically determined by morphological criteria, karyotype 

analysis, and molecular genetic techniques.  These tests help in risk-assessment and 

determining the most effective therapeutic approaches (Aul, Bowen et al. 1998, Stary, 

Baumann et al. 2008).     
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Refractory Cytopenia of Childhood (RCC) 

The most common pediatric and young adult subtype of primary MDS is RCC and 

can be difficult to distinguish from other disorders due to the overlapping morphological 

findings, which includes a variety of viral infections, vitamin deficiencies, and metabolic 

disorders.  This subtype is seen in more than half of the childhood MDS cases and affects 

both males and females equally.  These patients frequently present thrombocytopenia and 

neutropenia with a hypocellularity of bone marrow cells occurring in 75% of the patients 

and less frequently presents anemia.  Refractory cytopenia of childhood affects the bone 

marrow and blood and is rarely observed in the lymph nodes, spleen, or liver (Germing, 

Aul et al. 2008, Chatterjee, Choudhry 2013).  The most common signs and symptoms of 

RCC in children are malaise, bleeding, infection, and fever with over 20% of cases being 

asymptomatic.  Less than 2% blasts are found in the peripheral blood and less than 5% in 

the bone marrow.  Bone marrow aspirates present dysplastic changes including non-

lobulated nuclei, micromegakaryocytes, and abnormally separated nuclear lobes with an 

increase in erythropoiesis resulting in increased numbers of mitoses (Koh, Cho et al. 

2013).  Most RCC bone marrow aspirates will show a normal karyotype or a loss of 

chromosome 7 as the most common abnormality but karyotypes that are more complex 

have also been observed.  Cytogenetic karyotyping is the most important tool to determine 

the progression of RCC into more advanced subtypes of MDS.  The consequence of loss 

of chromosome 7 has an increased chance of progression than a normal karyotype or 

other aberrations with a median progression time of 1.9 years.  A gain of chromosome 8 

or a normal karyotype may result in longer OS and represents a more stable disease.  

Hematopoietic stem cell transplant (HSCT) is the treatment of choice in the early stages 

of RCC when monosomy 7 or a complex karyotype is observed and presents a favorable 

OS after treatment.  Immunosuppressive therapy (IST) is a potential treatment for patients 



www.manaraa.com

15 

 

with infections, presenting severe cytopenia, or lack the appropriate transfusion 

requirements from T-cell immunosuppression of hematopoiesis (Niemeyer, Baumann 

2011, Chatterjee, Choudhry 2013).      

Refractory Anemia with Excess Blasts and Refractory Anemia with Excess 

Blasts in Transformation (RAEB and RAEB-T) 

Refractory anemia with excess blasts, also called oligoblastic myelogenous 

leukemia, consists of 2-19% blasts in the peripheral blood or 5-19% blasts in the bone 

marrow.  In children, RAEB is typically slow progressing and shows stable blood counts 

for extended periods (Greenberg, Cox et al. 1997).  Refractory anemia with excess blasts 

in transformation may behave more like MDS and lacks the typical clinical features of AML 

including the responses to AML-type therapies (Chatterjee, Choudhry 2013).  An 

increased number of blast cells at about 20 to 30% are observed in the bone marrow in 

RAEB-T.  Typically, RAEB and RAEB-t present with AML associated cytogenetic 

aberrations of t(15;17), t(8;21), inv(16), t(9;11), or complex karyotypes consisting of three 

or more aberrations (Hasle, Niemeyer et al. 2003).  This subtype is the interface between 

MDS and de novo AML.  The most appropriate treatment for RAEB and RAEB-t is 

unknown but hematopoietic stem cell transplantation can increase overall survival of the 

patient (Chatterjee, Choudhry 2013, Hasle, Niemeyer et al. 2003).   

Secondary MDS: Treatment Related and Occupational Exposure 

Secondary MDS occurs at a younger onset age after chemotherapy or radiation 

therapy for a prior disease, after acquired aplastic anemia, or as a result of an inherited 

bone marrow failure disorder (IBMF) or familial disease (Niemeyer, Baumann 2011, Hasle, 

Niemeyer et al. 2003).  The exposure to chemotherapeutic alkylating agents following 



www.manaraa.com

16 

 

treatment for Hodgkins lymphoma (HL), Non-Hodgkins lymphoma (NHL), and acute 

lymphoblastic lymphoma (ALL) have been shown to be related to secondary MDS in 

younger populations (Stone 2009, Armitage, Carbone et al. 2003, Rubin, Arthur et al. 

1991).  The damage to hematopoietic stem cells during drug therapy causes an increase 

in the frequency and severity of thrombocytopenia, increases AML transformation, and 

decreases OS.  Ionizing radiation effects leukemia progression but is dose and duration 

dependent.  For example, the total dose exposure in HL treatment is directly proportional 

to the development of secondary MDS (Aul, Bowen et al. 1998).    

Occupational and environmental carcinogens including heavy metals, fumes, 

exhaust gases, pesticides and cigarette smoking can lead to secondary MDS.  

Occupational exposures are less observed in the younger populations than the adult 

population but include exposures to copper, welding fumes and hydrogen peroxide.  Other 

potential occupational causes of MDS later in life include associations with degreasing 

agents, nickel, exhaust gases and radio transmissions (West, Stafford et al. 2000).  In 

smaller case-controlled studies, plant and machine operation exposures to pesticides, 

exhaust fumes, fertilizers, and store dust have implicated etiologies for secondary MDS.  

Another risk for MDS includes cigarette smoking due to the number of carcinogens, 

specifically the presence of benzene (West, Stafford et al. 2000).  Benzene has been 

shown to cause a high incidence of morphological dysplasia and severity of 

thrombocytopenia, increases AML transformation, and decreases OS.  Benzene in the 

workplace including petroleum plants has stricter laws lowering the amount of benzene 

exposure due to the negative effects later in life (Aul, Bowen et al. 1998).   
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Inherited Bone Marrow Failure Disorders (IBMF) 

Inherited bone marrow failure disorders have overlapping morphological features 

with RCC including macrocytosis of the red blood cells on blood smears and elevated 

hemoglobin F.  These disorders need to be excluded using extensive past medical and 

family history evaluations in order to differentiate between IBMF and RCC (Niemeyer, 

Baumann 2011).  These acquired bone marrow disorders only consist of a small fraction 

of MDSs in the population.  Familial MDSs come from hereditary disorders that cause 

defective DNA repair and include Fanconi’s anemia and Bloom’s syndrome.  Fanconi’s 

anemia begins in childhood with bone marrow failure; 4-7% progress to MDS and AML in 

childhood and over 40% progress by the age of 40.   

Cytogenetically, these patients typically present monosomy 7 or gain of 3q26, 

which has been shown to have an adverse risk factor for AML progression due to the 

overexpression of EVI1 (Bernasconi, Cavigliano et al. 2003, Seif 2011, Niemeyer, 

Baumann 2011).  On the contrary, a gain of chromosome 1q, observed cytogenetically 

can lead to an extended amount of years without progression.  Neurofibromatosis, a 

genetic disorder of the nervous system, Shwachman-Diamond syndrome (SDS), and 

Down syndrome have also been attributed to MDS.  Patients with SDS have a 10-25% 

risk of MDS progression and cytogenetically show an increase in the incidence of 

isochromosome 7q leading to a potential clonal marker for the SDS in the SBDS gene 

located at 7q11.2 (Cantu, Proytcheva 2015).  Fortunately, cytogenetic correlations have 

shown a stable course for many years with i(7q) or del(20) in SDS patients (Chatterjee, 

Choudhry 2013, Niemeyer, Baumann 2011).   

An association with Down syndrome is seen in 20-25% of the pediatric MDS cases 

and these patients have a 10 to 20-fold increased risk of AML progression in comparison 
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to non-Down syndrome patients.  However, this type of myeloid leukemia is unique to this 

population and is classified into its own category of myeloid leukemia of Down syndrome 

(ML-DS) (Chatterjee, Choudhry 2013, Germing, Aul et al. 2008, Seif 2011, Cantor 2015).   

Aplastic Anemia (AA) 

Aplastic anemia (AA) displays aplasia of all three hematological cells with an 

increase in lymphocytes, plasma cells and mast cells.  This form of anemia has been 

shown to have an immune-mediated pathogenesis and typically follows 

immunosuppression with antithymocyte globulin, an antibody administered against human 

T-cells for drug therapy (Fu, Xue et al. 2015).  These agents have an incidence of MDS 

evolution at 9.6% and those that evolve to MDS typically display monosomy 7 or trisomy 

8 by conventional cytogenetic analysis (Aul, Bowen et al. 1998, Niemeyer, Baumann 2011, 

Ohara, Kojima et al. 1997).   

Treatment for MDS 

The only potential cure for MDS consists of allogenic HSCT.  The goals of the 

transplant are to restore the body’s ability to make healthy blood cells once chemotherapy 

has been administered and to kill any remaining MDS cells.  When benefits exceed the 

risks for the patient, this in an option when a stem cell donor is available.  Unfortunately, 

HSCT is not a favorable therapy in the older populations due to the dangers of advanced 

age and other comorbidities (Tilak, Sookmane et al. 2008, Smith, Christiansen et al. 2013). 

The current treatment of MDS primarily in the elderly populations includes the use 

of one of three FDA approved chemotherapeutic drugs azacitidine, decitabine, and 

lenalidomide (Zou, Fink et al. 2007, List, Dewald et al. 2006).  These drugs are approved 

for both low- and high-risk patients.  In the adult populations, MDS has well recognized 
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entities including cytogenetic findings that result in specific treatments and therapy 

(Giagounidis 2006).  For example, the most frequent cytogenetic abnormality in the adult 

population, about 30% of the abnormal adult MDS cases, consists of loss of chromosome 

5 or more frequently the loss of the long arm of 5 and the hypomethylating agents of 

azacitidine and decitabine are approved and used for these patients with a high success 

rate.  Without the observance of a complex karyotype, this treatment gives the most 

favorable prognosis for survival with a higher median year of OS (Greenberg, Tuechler et 

al. 2012, Haase 2008, Haase, Germing et al. 2007, Steensma, Komrokji et al. 2014).  

Unfortunately, these same therapies have yet to be deemed as a successful 

treatment in the pediatric population; without a bone marrow transplant, OS of pediatric 

MDS patients is low (Ohara, Kojima et al. 1997, Silva, Maschietto et al. 2013, Steensma, 

Komrokji et al. 2014).  Since HSCT is the most favorable treatment for patients with less 

advanced age, it is ideal for the pediatric MDS population.  This treatment is most 

successful when performed early in the disease and is one reason why an accurate and 

timely diagnosis criterion needs to be established.  The sooner we can diagnose, the 

sooner we can treat, and the higher probability that a cure can occur (Germing, Aul et al. 

2008, Smith, Christiansen et al. 2013).  With the numerous techniques currently available, 

it is crucial to continue to contribute to the scientific understanding of pediatric MDS, so 

early diagnostic testing is made available.     

Genetic Testing in Myelodysplastic Syndromes 

The heterogeneity of MDS is not only observed in cellular morphology but is also 

seen at the genetic level.  Cytogenetic abnormalities by conventional karyotyping or FISH 

is observed in over 50% of MDS cases; yet a single cytogenetic abnormality is not 

considered a genetic hallmark of the disease (Haase, Germing et al. 2007, Cherian, Bagg 
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2006, Rigolin, Bigoni et al. 2001).  Variable abnormalities including the hallmark 

cytogenetic abnormalities for adult MDS of monosomy 5 or a del(5q), monosomy 7 or 

del(7q), trisomy 8, and del(20q) are described in MDS (Haase 2008, Pitchford, Hettinga 

et al. 2010).  Cytogenetic techniques are an essential tool in accurate diagnosis and 

provide important prognostic impact including therapeutic stratification.  These strategies 

are used for determining disease clonality and to determine probabilities of AML 

progression (Costa, Valera et al. 2010, Bernasconi, Cavigliano et al. 2003, Valent, Horny 

2009).  The presence or absence of specific aberrations form the basis of very good-, 

good-, intermediate-, poor-, or very poor-prognosis designation in the adult population 

which has a profound impact on patient survival and leukemic transformation (Germing, 

Aul et al. 2008, Greenberg, Tuechler et al. 2012).    

Cytogenetic abnormalities of MDS typically consist of an unbalanced aberration in 

the form of deletions or monosomies leading to the assumption that tumor suppressor 

genes have lost function or have become inactivated.  Balanced translocations and 

inversions along with random abnormalities are rarely observed.  The presence of 

hallmark aberrations, either as a sole anomaly or in a more complex karyotype with more 

than one change, contributes to the overall prognostic score.  The occurrence of these 

abnormalities have shown distinct differences between the adult and pediatric 

populations.  To date, we have already determined distinct features in the pediatric 

population that are different from the adult patients including the occurrence and frequency 

of these hallmark cytogenetic abnormalities and their prognostic implications.  Refinement 

of the prognosis of chromosomal findings has occurred as recently as 2012 in the revised 

international prognostic scoring system (IPSS-R) and provides insight into the patient's 

OS and the frequency of MDS transformation into AML (Greenberg, Tuechler et al. 2012, 

Kulasekararaj, Mohamedali et al. 2013, Gohring, Michalova et al. 2010, Greenberg 2015). 
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Cytogenetics in Adult Populations 

The most frequent cytogenetic abnormality among the adult population, over 30%, 

consists of the loss of chromosome 5 or a variable deletion of the long arm of chromosome 

5 (-5/del5q) but always spanning the chromosome region of q31 (Haase, Germing et al. 

2007).  This abnormality presents the most favorable prognosis in the older populations 

with specific therapies and treatments that present favorable OS.  The least favorable 

prognosis occurs with the loss of chromosome 7 or a deletion of the long arm of 7 (-7/ 

del7q) and is observed in about 21% of adult MDS (Jhanwar 2015).  Loss of 7 or del(7q) 

occurs more often as part of a complex karyotype and is associated with severe refractory 

cytopenia and a proneness to infections.  Drug therapy for these patients has been 

unsatisfactory and the best treatment is allogeneic stem cell transplantation, when 

possible (Deeg, Scott et al. 2012).  Trisomy 8 (+8) in the adult population is only observed 

in about 16% of MDS and is observed as a sole anomaly 46% of the time.  This abnormality 

falls under an intermediate prognosis of a median month of survival at or above 23 months 

(Haase 2008).  A deletion of the long arm of chromosome 20 (del20q) is the least frequent 

abnormality observed at about 7% and gives a favorable prognosis of OS above 23 

months (Haase 2008, Haase, Germing et al. 2007, Mallo, Arenillas et al. 2008).   

Cytogenetics in Pediatric Populations 

In the pediatric population, 55% of the primary MDS cases contain a karyotypic 

abnormality and 76% of the secondary MDS cases contain an abnormality that can be 

observed using conventional techniques (Gohring, Michalova et al. 2010, Silva, 

Maschietto et al. 2013).  The differences between the adult and younger populations is 

seen in the occurrence and frequency of hallmark cytogenetic abnormalities.  The most 

distinct difference between the adult and pediatric population occurs with the hallmark 
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abnormality of -5/del(5q).  In the pediatric population, -5/del(5q) is virutally never seen, 

and when observed, presents the most unfavorable prognosis  (Hofmann 2015a).  The 

younger patients with this aberration have the highest occurrence of AML transformation, 

a lowered OS, and the treatment protocol remains undefined.   

The pediatric MDS population exhibits -7/del(7q) most frequently amongst the four 

hallmark abnormalities in about 30% of the patients (Niemeyer, Baumann 2008, Kardos, 

Baumann et al. 2003).  This chromosomal aberration is seen as a sole abnormality, 

presents the most favorable prognosis in young patients, and correlates with a longer-

term survival.  The moderate frequency, 16%, of a +8 in the younger population is 

comparable to the frequency observed in the adult population.  In both populations, this 

abnormality falls under an intermediate prognosis of a median month of survival at or 

above 23 months.  Lastly, the observance of del(20q) in the pediatric population is 

comparable to the adult population in about 10%.  This abnormality presents a prognosis 

of survival above 23 months in both populations (Glaubach, Robinson et al. 2014, Rau, 

Shreedhara et al. 2012).    

Prognostic Implications of Cytogenetics 

According to the most recent IPSS-R, prognostic variables are given scores based 

upon the number of blasts in the bone marrow, number of platelets, absolute neutrophil 

count, hemoglobin numbers, and cytogenetic findings.  Cytogenetic findings are needed 

to determine specific anomalies and the number of aberrations present to determine the 

prognostic implications for MDS (Steensma, Komrokji et al. 2014).  The score values for 

these factors will predict median survival in years without treatment and the potential of 

AML transformation without therapy.  A prognostic score value of very good, good, 



www.manaraa.com

23 

 

intermediate, poor, and very poor is given for specific cytogenetic abnormalities being 

observed.   

In adult MDS cases, a score of ‘very good’ is given to MDS cases with a loss of 

the Y chromosome (-Y) and a deletion of the long arm of chromosome 11, del (11q).  The 

loss of Y aberration has often been associated with advanced age in males.  

Myelodysplastic syndrome is typically a disease of the advanced age, hence loss of Y 

would be common in MDS and prognostic correlations show that it leads to a favorable or 

neutral prognosis (Goldberg, Chen et al. 2010, Flandrin 2002).  A score of ‘good’ is given 

with normal karyotypes, del(5q), del(12p), del(20q), and double abnormalities with del(5q).  

Cytogenetic findings of del(7q), +8, +19, i(17q), and the presence of any other single or 

double independent clones leads to an ‘intermediate’ score.  A ‘poor’ score consists of -7, 

inv(3)/t(3q)/del(3q), double abnormalities including -7/del(7q), and complex karyotypes 

with three abnormalities.  A ‘very poor’ score is given to adult MDS cases with more than 

three cytogenetic abnormalities (Greenberg 2015, Greenberg, Tuechler et al. 2012).  

 In general, these prognostic scores are meant as a point of reference for MDS 

cases and caution should be used when pediatric management and therapeutic strategies 

are utilized.  Even though the IPSS is a useful therapy guide in adults, a validated and 

useful prognostic guide for the pediatric group has not been established to date and is 

needed for therapeutic success in this group of patients.   

Utility of Microarray Studies 

Understanding the genetic characteristics unique to the pediatric group is the first 

step to decipher the unknowns in this group of MDS.  Conventional techniques are able 

to detect chromosomal abnormalities in over 50% of primary MDS and 80% of secondary 
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MDS cases but in order to detect aberrations that may be too small or that are missed by 

these techniques; we need to utilize higher resolution array techniques.  This technique is 

a reliable and efficient tool to identify genomic alterations in MDS from bone marrow DNA 

(Maciejewski, Tiu et al. 2009).  When deletions and gains are observed cytogenetically, 

this suggests haplosufficiency, a loss of tumor suppressor genes, or oncogene activation 

and microarray can shed light onto these molecular alterations.   

Microarray will also be useful in suboptimal cases with little or no growth of cells 

and for those studies that present normal karyotypes and FISH analyses (Visconte, Selleri 

et al. 2014).  With rare diseases that have limited information, we are in need of a starting 

point and we can achieve this through the utilization of resources and techniques that are 

available to us.  Copy number variations (CNV), microdeletions and single-nucleotide 

polymorphisms (SNPs), and specific gene disruptions that alter epigenetic regulators can 

be detected using microarray techniques.  High-resolution microarray can improve the 

detection of genomic aberrations in MDS by identifying key alterations in copy number 

gains or losses in DNA from MDS samples.  Microarray studies do not require 

chromosome preparations to determine copy number changes and they can identify very 

small deletions and duplications that would otherwise be undetected by conventional 

cytogenetic techniques (Silva, Maschietto et al. 2013, Ismael, Shimada et al. 2012).   

Current novel studies have determined that the majority of adult MDS patients, 

over 80%, have a detectable somatic alteration among genes involved in various 

epigenetic regulatory pathways (Shih, Abdel-Wahab et al. 2012, Bejar 2014).  Over 60 

genes have been identified and play a role in chromatin modification, DNA methylation, 

transcriptional regulation, DNA repair/tumor suppressor, signal transduction, and 

cohesion complexes.  RNA splicing mutations play a major role in determining clinical 
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features of the disease including the morphological features and OS of the patient (Zhang, 

Padron et al. 2015, Jhanwar 2015, Greenberg 2015, Visconte, Selleri et al. 2014, 

Papaemmanuil, Gerstung et al. 2013).  However, these somatic mutations have yet to be 

included into the current prognostic scoring systems and most studies detailing these 

genetic changes have been conducted on adult MDS cases.  The continued identification 

of key genes is a crucial step in deciphering players involved in hematopoietic 

transformation in the pediatric MDS group.  This information can be used to better equip 

the medical community in accurately diagnosing and providing prognostic implications for 

therapy and treatment (Bejar 2014).  

Hypothesis and Specific Objectives 

Since MDS is less frequently observed in the younger populations, there is limited 

information available in comparison to the elderly population including diagnostic criteria 

and prognostic implications.  The younger population is relatively less exposed to the 

environmental and occupational risk factors, and for a shorter time span, therefore, it is 

more likely that a genetic alteration may be playing a role in disease causation.   

Genetic disorders are closely associated with a predisposition to MDS including 

Down syndrome, Bloom syndrome, and IBMF syndromes but not all pediatric MDS 

patients share one of these constitutional syndromes.  More research is needed in order 

to decipher the genetic causes of the disease.  Our overall working hypothesis is that there 

are distinct genetic differences between pediatric/young adult and elderly MDS 

populations; and in-depth investigations can improve the understanding of the 

pathophysiology, refine diagnostic categorization and therapeutic stratification using 

comprehensive analysis of multiple genetic techniques.  
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Inconsistence and imprecise classification of pediatric MDS causes differences in 

the diagnosis and reporting of this rare group.  We propose to perform cytogenetic 

comparisons in pediatric/young adult and adult/elderly MDS samples. A comprehensive 

genetic analysis using microarray in a subset of pediatric/young adult MDS cases will be 

conducted.  The significance of altered genes in various pathways will be determined.  

This study uses one of the largest cytogenetically characterized cohorts of MDS 

specimens in order to accurately detect frequencies of specific abnormalities.  A small 

subset of pediatric/young adult cases will be used for high-resolution array studies to 

determine cryptic abnormalities not observed by conventional cytogenetic techniques.  A 

comparison to existing reports helps determine the genomic alterations that specifically 

influence the classification and pathway changes in MDS cases.  Even though current 

studies have determined a set of recurrent abnormal gene aberrations in MDS cases, the 

vastly different populations of adult and pediatric has not been well characterized at the 

molecular level (Papaemmanuil, Gerstung et al. 2013, Zhang, Padron et al. 2015).   

Currently, there are no known targeted therapies based upon the genetic 

landscape in the younger populations.  This study will give insight on any differences and 

similarities between MDS from the two age groups and will allow us to better understand 

the key genetic and prognostic differences that can subsequently aid in the development 

of treatments specific for the pediatric and young adult MDS populations (Mandel, Dror et 

al. 2002). 
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MATERIALS AND METHODS 

This study was comprised of conventional cytogenetics, FISH, and Affymetrix 

CytoScan® or OncoScan® array analysis of MDS specimens that were referred to the 

Human Genetics Laboratory at the University of Nebraska Medical Center from January 

1, 2003 to December 31, 2015.  Bone marrow aspirations and unstimulated peripheral 

blood samples were used for cytogenetic and FISH analyses and when available, DNA 

was extracted from leftover whole specimen for microarray analysis.  This study was 

approved by the institutional review board. 

Specimen Collection and Handling 

From January 1, 2003 through December 31, 2015, bone marrow and peripheral 

blood specimens with a clinical diagnosis of MDS were analyzed using conventional 

cytogenetic techniques including karyotyping and/or FISH.  These specimen types have 

the capability of spontaneous proliferation and the manner in which the samples are 

collected and handled upon arrival into the laboratory greatly influences the quality of 

analyses.    

Bone marrow aspirates and peripheral blood samples collected from 3992 

consecutive samples obtained from 2948 MDS cases and analyzed for cytogenetic and/or 

FISH studies performed at the Human Genetics Laboratory at the University of Nebraska 

Medical Center from 1990 to 2015 were examined.  Over the given time span, a variable 

number of specimens ranging from 1-13 were analyzed from each patient, thus explaining 

a total of 3992 consecutive specimens from 2948 MDS cases received in our laboratory.    

Sample Requirements for Blood and Bone Marrow:  Peripheral blood samples 

and bone marrow aspirate collection methods were essentially the same.  The specimens 
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were collected in sterile syringes or vacuum tubes containing preservation-free sodium 

heparin.  Typically, the first few milliliters of bone marrow is the optimum sample with the 

highest amount of cells.  In order to achieve the highest quality of results, 0.5 to 2.0mL of 

specimen was collected and transported at room temperature and processed for genetic 

studies in our laboratory.   

Conventional Cytogenetic Studies 

Traditional cytogenetic studies utilizes actively dividing cells; bone marrow and 

peripheral blood contain proliferating cells but when dividing cells are few in numbers, 

additives are used to stimulate mitosis.  Successful cytogenetic cultures had specific 

requirements for initiation, maintenance, and cell harvesting for optimum results.  

Prepared slides were stained using Giemsa banding (G-banding) techniques and analysis 

was performed using brightfield microscopes and fluorescence microscopes for FISH 

analyses in conjunction with a computerized imaging system for classical karyotyping 

(CytoVision® Image Analysis System, Leica Biosystems, Buffalo Grove, IL) (Figure 2). 

Specimen Culturing:  Peripheral blood and bone marrow specimens were grown and 

maintained in a liquid growth medium containing essential components for optimal cell 

growth that produced high quality banded karyotypes rapidly.  Chang Medium® BMC 

(Irvine Scientific, Irvine, CA) was used for human bone marrow and peripheral blood 

specimens for cytogenetic testing of hematological disorders.  Chang Medium® BMC 

consists of RPMI Medium 1640 with fetal bovine serum (FBS), essential for good cell 

growth; HEPES buffer to maintain the proper pH; L-glutamine, an essential amino acid, a 

component for maximum cell growth; gentamicin sulfate, used to inhibit microbial growth 

in the medium; and giant cell tumor extract a specially formulated growth factor for bone 

marrow cultures.   
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Chang Medium® BMC has been optimized to support efficient cell attachment and growth 

of bone marrow cells for cytogenetic analysis.  These cultures were grown in suspension 

using sterile 15mL screw cap centrifuge tubes in a slant rack placed within a 37oC 

incubator with 0.2 to 0.5mL of whole specimen added aseptically.  As described in Figure 

3, multiple cultures were initiated and incubated for 24 and 48-hour time periods.  In one 

culture, Colcemid® (Irvine Scientific, Irvine, CA) was added to block mitotic cells at 

metaphase.  For specimens collected and received on the same day in the laboratory, a 

direct culture (DIR) was set up which nearly eliminates cell culture time by treating the 

bone marrow aspirate with a solution containing 1XTrypsin-EDTA (Irvine Scientific, Irvine, 

CA), hypotonic salts, and 0.08ug/ml Colcemid® (THC).  The Trypsin-EDTA in this solution 

breaks up cell clusters and alters cell membranes, which facilitates better spreading of 

chromosomes during the slide preparation stage.  A hypotonic salt solution containing 

0.4% potassium chloride (KCL) was used to induce cell swelling and the simultaneous 

events of Trypsin-EDTA and KCL acted to "prime" the cells for the remaining steps of 

chromosome preparation.  The immediacy of the THC treatment, especially with regard to 

the action of Colcemid® in the hypotonic solution, gives a better representation of the 

mitotic index and proportion of various cell types in the marrow at the time of 

aspiration.  These cultures were incubated at 37oC in a slant rack for 20 minutes and were 

immediately harvested after the incubation time.  A direct overnight culture (DON) was 

initiated for specimens received in the laboratory at least one day after collection.  These 

cultures were incubated for 24 hours with Chang Medium® BMC and 10µl of Colcemid® 

(Dave, Wiggins et al. 2005, Dave, Hess et al. 1999, Higgins, Soe et al. 1993, Gersen, 

Keagle 2013).  
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Figure 3. Workflow of cytogenetic culture setup.  Culture setup for conventional 
cytogenetic studies based upon collection and received date of specimen.  (a) 
When specimens were collected and received on the same day, two cultures were 
inoculated with 0.5mL of specimen in Chang BMC media and incubated for 24 and 
48 hours before harvesting.  One culture was inoculated with 0.5mL of specimen 
in THC (1XTrypsin-EDTA, hypotonic salts, and 0.08ug/ml Colcemid®), incubated 
for 20 minutes, and harvested.  (b) When specimens were collected and received 
on different days, two cultures were inoculated with 0.5mL of specimen into Chang 
BMC media and incubated for 24 and 48 hours before harvesting.  One culture had 
0.5mL of specimen, Chang BMC media, and Colcemid® added, to block mitotic 
cells in metaphase, and was then incubated for 24 hours before harvesting. 
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Specimen Harvesting:  The harvesting of bone marrow and cancer blood samples was 

performed after the appropriate initial incubation period (20 minutes, 24 hours, or 48 

hours).  On the day of harvest, cultures were centrifuged for 6 minutes at 1500 rpm, the 

supernatant was aspirated off to 0.5-1.0 cm above the cell pellet, and 10mL of THC was 

added.  Cultures were incubated in a slant rack for 20 minutes at 37oC.  After the 

incubation time, suspension cultures were prefixed using 2mL of freshly prepared 3:1 

methyl alcohol glacial acetic acid (Mallinckrodt Pharmaceuticals, St. Louis, MO) fixative 

for a gentle initial lysing of red blood cells.  Specimen tubes were gently inverted to mix 

fixative and specimen culture and then spun at 1500 rpm for 6 minutes.  Supernatant of 

the fixed cell pellet was aspirated 0.5-1.0cm above the cell pellet and 6mL of fixative was 

added, inverted to mix, and spun for 6 minutes.  After aspirating the supernatant, 4mL of 

fixative was added, mixed with the culture, and spun for another 6 minutes.  This step was 

repeated until the supernatant was clear of lysed red blood cells.  After each fixation, the 

supernatant was removed closer to the cell pellet, approximately 0.5-1.0cm above to just 

above the cell pellet (Higgins, Soe et al. 1993, Howe, Umrigar et al. 2014).   

Slide Preparation:  After specimen culturing and harvesting, slide preparations were 

prepared from fixed cell pellets free of lysed red blood cells.  Fixed cells were dropped 

onto pre-cleaned cold, wet slides with a micropipette at a 45o angle.  To obtain optimum 

chromosome spreading and morphology, a temperature and humidity controlled 

environmental chamber was utilized during the slide preparation and drying process.  The 

Thermatron Drying Chamber CDS-5® (Venturedyne, Ltd., Holland, MI.) was set at 27oC 

and 47% relative humidity, which is ideal for metaphase spreads for bone marrows and 

peripheral bloods (Howe, Umrigar et al. 2014, Dave, Wiggins et al. 2005, Higgins, Soe et 

al. 1993).   
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Slide Staining:  To produce high-contrast permanent banding of chromosomes, G- 

banding techniques were utilized.  Unstained slides were aged by incubation in a 100oC 

hot oven for 25 minutes before staining reagents were applied to enhance the absorption 

of stain and to produce a more consistent banding pattern.  Slides with metaphase 

spreads were placed in 1X Trypsin-EDTA with Hanks Balanced Salt Solution (HBSS) 

(Irvine Scientific, Irvine, CA) for 6 seconds and then stained for approximately 50 seconds 

with Wright’s working stain, prepared by adding one-part Wright’s Stock Solution (Sigma-

Aldrich, St. Louis, Missouri) to two parts of pH 6.8 Gurr’s Buffer (BDH Laboratory, Poole, 

England).  After the appropriate time, slides were immediately rinsed with cold fresh water 

and air dried before analyses. 

Cytogenetic Analysis:  Giemsa-banded chromosomes were analyzed using bright-

field microscopes (Olympus BX models).  Image capture and karyotypic analysis was 

performed using CytoVision® Image Analysis System (Leica Biosystems, Buffalo Grove, 

IL, USA).  Karyotypes were described and documented according to the most recent 

International System for Human Cytogenetic Nomenclature (ISCN 2013) (Shaffer, 

McGowan-Jordan et al. 2013).  A minimum of 20 metaphases from at least two 

independently established cultures were examined, when possible, for each case.  The 

cells selected for analysis had a band-level resolution greater than or equal to 400 and a 

range of chromosome morphology for unbiased results.  A normal karyotype was defined 

as the lack of an identifiable abnormal clone in the metaphase cells analyzed.  An 

abnormal clone was defined, according to the ISCN guidelines, when three cells 

containing the same loss of chromosome and two cells showing the same gain of 

chromosome or structural abnormality was observed.  Independent clones, clonal 

evolution with one or more subclones, and complex karyotypes containing three or more 

aberrations were also reported according to ISCN guidelines.  Conventional chromosome 
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analysis is used at time of diagnosis as a prognostic tool and can be especially beneficial 

to track clonal evolution and progression of the disease (Dave, Wiggins et al. 2005, Valent, 

Horny 2009, Valent, Horny et al. 2007).  

Fluorescence in situ Hybridization (FISH) 

Fluorescence in situ hybridization techniques allow for the rapid and precise 

detection of specific nucleic acid sequences on interphase cells from fixed cells pellets 

following specimen initiation, maintenance, and harvesting as described previously.  This 

technique was applicable for the detection of aneuploidy, translocations, and the 

identification of small marker and derivative chromosomes.  This technique was a valuable 

addition to conventional cytogenetic analysis for diagnostic evaluation of hematologic 

disorders especially when metaphases were unavailable or suboptimal (Dave, Wiggins et 

al. 2005).  Figure 4 depicts the flow diagram describing the technical steps involved in the 

FISH process.  Fixed cells were dropped on clean slides specifically for FISH studies and 

probe mixtures were prepared and applied.  A series of steps including co-denaturation, 

hybridization, and counter staining were performed before FISH analysis was carried out.  

This technique utilized a defined panel of probes specific for characteristic chromosome 

aberrations observed in MDS patients (Pitchford, Hettinga et al. 2010).  The panel 

consisted of commercially available probes: LSI® EGR-1 (5q31)/D5S23, D5S721 (5p15.2) 

DNA Probe, the D7S486 (7q31)/CEP 7 (D7Z1) DNA Probe, and either the LSI® D20S108 

(20q12) DNA Probe (Abbott-Vysis) or the Cytocell Del(20q) (20q12 and 20q13.12) 

Deletion Probe (Cytocell, Cambridge, UK) cocktailed with the CEP 8 (D8Z1) DNA Probe 

(Abbott-Vysis, Abbott Park, IL) (Figure 5) (Dave, Wiggins et al. 2005, Dave, Hess et al. 

1999, Rigolin, Bigoni et al. 2001, Costa, Valera et al. 2010, Bernasconi, Cavigliano et al. 

2003, Mallo, Arenillas et al. 2008).  
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Figure 4. Workflow of FISH studies.  Slides and probes were prepared 
before co-denaturation and hybridization occurred.  Slides were then 
washed and counterstained before analysis. 
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Slide Preparation:  Fixed cells from cultured bone marrow were used to prepare slides 

specifically for FISH analyses.  Using the Thermatron Drying Chamber® provided a 

consistent environment for optimal results of 25oC temperature and 47% relative humidity 

during dropping.  On each slide, two areas were utilized for cell dropping.  Typically, 10µL 

of resuspended cells were placed on each hybridization area.  Once the slides were dry, 

the slides were examined under a phase contrast microscope to verify that an adequate 

number of interphase cells were present.  If inadequate numbers of cells were present, 

more cells were dropped on the specific hybridization area before proceeding with aging 

the cells in a hot oven at 100oC for two minutes (Dave, Hess et al. 1999).   

FISH Probe Preparation:  The preparation of probe and buffer mixtures from 

commercially purchased probes were performed after slide preparation.  Probes for the 

MDS specific abnormalities were mixed in a solution that contained 1µL of probe with 7µL 

of probe specific LSI or CEP hybridization buffer and 1µL of sterile, deionized water.  Only 

3µL of the probe mixture containing the specific probe, buffer, and water was applied to 

the hybridization area on the pre-warmed slide.  Each hybridization area was coverslipped 

with 12mm round coverslips and then sealed with rubber cement.   

Co-Denaturation and Hybridization:  Interphase cells and probes applied to the slide 

were co-denatured and hybridized using a HYBrite™ or a ThermoBrite™ instrument 

(Abbott-Vysis, Abbott Park, IL).  The co-denaturing and hybridization of both the target 

DNA and the specific probe set was performed at 78°C for 3 minutes and then 39°C 

overnight when using the HYBrite™ instrument.  When using the ThermoBrite™ instrument, 

the program consisted of 75°C for 1 minute and overnight at 37°C.   
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Slide Washing:  Following hybridization, the rubber cement and round coverslips were 

removed and slides were washed with 0.4% sodium chloride and sodium citrate (SSC) 

(Sigma-Aldrich, St. Louis, MO) containing 0.3% Nonidet P-40 (NP-40) (Abbott-Vysis, 

Abbott Park, IL).  The wash solution was at a temperature of 72°C and was performed for 

2 minutes.  Slides were then placed in 2XSSC with 0.1% NP-40 for 1 minute at room 

temperature.  The slides were removed and air-dried before counter-staining.   

Counter Staining:  Slides containing interphase nuclei were counterstained with 10µL 

of 4,6-diamidino-2-phenylindole (DAPI II) in Antifade solution (Abbott-Vysis, Abbott Park, 

IL) proceeding co-denaturation, hybridization, and slide washing.  After the application of 

DAPI II, a 22x50mm coverglass was applied for slide protection and for microscopic 

analysis.     

FISH Analysis:  The prepared slides were analyzed using Olympus BX61 or Leica 

DM6000B fluorescence microscopes equipped with appropriate filters for individual colors: 

red, green, aqua, and DAPI as well as dual color red/green and DAPI/red/green filters.  

Hybridization signals, when available, were assessed in 50-200 interphase nuclei per 

probe.  A deletion or loss of DNA region was determined by the absence of probe signals 

specific for the region of interest with the presence of applied controls.  A gain was defined 

as the presence of greater than two individual probe signals specific for the region of 

interest.  Abnormal ranges were established for each specific probe and included 5-100% 

of total interphase cells observed for probes detecting -5, -7, +8, and concurrent deletions 

of 20q12-20q13.12; for deletions of 5q31 and 7q31 the abnormal range was 7-100%; and 

for a deletion of 20q12 the abnormal range was 10-100%.  Images were acquired, 

analyzed, and archived using the Leica Biosystems capture software, CytoVision® Image 
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Analysis System (Leica Microsystems, Buffalo Grove, IL)  (Dave, Wiggins et al. 2005, 

Dave, Hess et al. 1999, Rigolin, Bigoni et al. 2001). 

Microarray 

Microarray is a reliable and powerful molecular tool that can be used in conjunction 

with traditional cytogenetics to identify genomic alterations in MDS from bone marrow 

DNA.  This technique aids in providing an overview of DNA sequence copy number 

changes including losses, gains, and amplifications for the whole genome.  Unlike other 

molecular methods, microarray allows for a complete analysis of every chromosome in 

the genome using extracted DNA from whole bone marrow and peripheral blood (Bejar, 

Stevenson et al. 2011, Shih, Abdel-Wahab et al. 2012, Ismael, Shimada et al. 2012, Orazi, 

Germing 2008).  This method utilized the Affymetrix CytoScan® HD Array (Affymetrix, 

Santa Clara, CA) protocol that included a series of specific steps of DNA digestion, 

ligation, PCR, purification, fragmentation, labeling, hybridization, array washing, scanning, 

and analysis using the Affymetrix Chromosome Analysis Suite (ChAS) software.  For three 

cases, we utilized the Affymetrix OncoScan® FFPE Assay (Affymetrix, Santa Clara, CA) 

protocol to validate the use of whole bone marrow specimen on this platform.  This protocol 

contained a series of stages including annealing, gap filling, two rounds of PCR, digestion, 

hybridization followed by washing, staining, and scanning.   

DNA Extraction:  Genomic DNA was isolated from whole bone marrow and peripheral 

blood samples when sufficient specimen was available after conventional cytogenetic and 

FISH analyses.  DNA was extracted using the Qiagen QIAcube® automated robot and 

Qiagen spin column kits (Qiagen, Redwood City, CA).  The Qiagen QIAcube protocol 

utilized advanced technology to enable a completely automated, low-throughput sample 

preparation of DNA purification from a small amount of original specimen (400µl).  The 
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automated robot lysed the red blood cells of bone marrow and peripheral blood and bound 

the DNA to the Qiagen spin columns.  The bound DNA was washed and then eluted from 

the column leaving a total of 100µl of high quality DNA.   

DNA Quantification:  DNA samples that presented high quality, based upon 

spectrophotometry results, were used for microarray.  DNA quantification was determined 

using the Qubit™ 3.0 Fluorometer instrument (ThermoFisher Scientific, Waltham, MA).  

The Qubit® fluorometer uses commercially purchased standards and a small amount of 

purified DNA that enables a greater sensitivity and accuracy than UV absorbance 

measurements.  This analytical assay determined DNA quality of 40 to 400 µg/ml for 26 

of the 28 bone marrow and peripheral blood specimens collected for microarray studies.   

CytoScan® HD Array Assay Technique   

The Affymetrix CytoScan® HD Array offered high-density resolution of the entire 

genome, covering promotor and miRNA regions, for detection and reporting of 

abnormalities.  It provided maximum coverage for precise mapping of the whole genome 

for detecting copy number variations and copy neutral loss of heterozygosity (LOH) in 

addition to detecting novel submicroscopic deletions/duplications.  This assay included 

750,000 million SNPs with over 99% accuracy to detect chromosomal aberrations across 

the genome.  The CytoScan® Assay protocol was optimized for processing 8 to 24 

samples in parallel and followed eight stages of DNA digestion, ligation, PCR, PCR 

purification, PCR quantification, fragmentation, labeling, and hybridization.  After the 

arrays were hybridized, the chips were then washed and stained and scanned using the 

Affymetrix GeneChip® Scanner 3000 7G, controlled by the Affymetrix GeneChip® 

Command Center.  The exported array results were analyzed using the Affymetrix 

Chromosome Analysis Suite (ChAS) software. 
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CytoScan® HD Array Digestion:  Restriction enzyme digestion of the purified DNA 

sample utilized Nsp I enzyme.  A master mix of Affymetrix CytoScan® chilled nuclease-

free water, 10X Nsp I buffer, 100X BSA, and the Nsp I enzyme was prepared on ice (Figure 

6a).  Only 14.75µL of this master mix was aliquoted to 5.0µL of genomic DNA (50ng/µL) 

and 5.0µL of a negative control containing low EDTA TE buffer in a 96-well plate.  The 

plate was placed into a preheated GeneAmp™ PCR System 9700 thermocycler (Applied 

Biosystems, Waltham, MA) and the CytoScan® Digest program was set for approximately 

140 minutes before proceeding to stage two (Figure 6b).  

CytoScan® HD Array Ligation:  After digestion with Nsp I, adaptors were ligated 

using a master mix composed of Affymetrix CytoScan® 10X T4 DNA ligase buffer, 50µM 

Nsp I adaptor, and T4 DNA ligase (Figure 7a).  A fraction of the ligation mixture, 5.25µL, 

was added to the digested sample plate for a total reaction volume of 25µL.  The ligation 

plate was placed into a preheated thermocycler and the CytoScan® Ligate program ran 

for approximately three and a half hours (Figure 7b). 

CytoScan® HD Array Polymerase Chain Reaction (PCR):  Before PCR could 

proceed, the ligated samples were diluted with Affymetrix nuclease-free water.  The 25µL 

ligated DNA was diluted with 75µL of Affymetrix nuclease-free water to a final volume of 

100µL.  The PCR reaction utilized a Titanium™ DNA amplification kit (Clontech 

Laboratories, Takara Bio Company, Mountain View, CA) and water from Affymetrix 

CytoScan® reagents.  Only 10µL of the diluted samples were then transferred to four 

empty wells on a 96-well plate.  A PCR master mix was prepared with chilled Affymetrix 

nuclease-free water, 10X Titanium™ Taq PCR buffer, GC-melt reagent, dNTP mixture 

(2.5mM each), PCR primer (002), and 50X Titanium™ Taq DNA polymerase was added 

immediately before aliquoting into the diluted ligated sample wells (Figure 8a).   
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Figure 6.  Restriction enzyme digestion CytoScan® protocol.  (a) The restriction 
enzyme digestion master mix utilized Affymetrix CytoScan® chilled nuclease-free 
water, 10X Nsp I buffer, 100X BSA, and the Nsp I enzyme.  (b) The digestion 
reaction was performed in a thermocycler for 140 minutes.  The process involves 
specific temperature changes as mentioned.   
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Figure 7.  Ligation CytoScan® protocol.  (a) The ligation master mix utilized 
Affymetrix CytoScan® 10X T4 DNA ligase buffer, 50µM Nsp I adaptor, and T4 DNA 
ligase. (b) The ligation reaction was performed in a thermocycler for approximately 
3 ½ hours at various temperatures. 
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Figure 8. PCR CytoScan® protocol.  (a) The PCR master mix utilized chilled 
Affymetrix nuclease-free water, 10X Titanium™ Taq PCR buffer, GC-melt reagent, 
dNTP mixture (2.5mM each), PCR primer (002), and 50X Titanium™ Taq DNA 
polymerase. (b) The PCR reaction was performed in a thermocycler for 
approximately 55 minutes. 
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The PCR plate was placed into a preheated thermocycler in the post-PCR area to avoid 

contamination.  A total of 90µL of the PCR master mix was added to each of the four 10µL 

ligated and diluted DNA samples.  The CytoScan® PCR program required approximately 

55 minutes for completion (Figure 8b).   

After the PCR reaction, 3µL of the product quality was determined by running it on 

a 2% TBE (Lonza Group, LTD, Switzerland) precast gel against 5µL of USB PCR marker 

50-2000bp (Affymetrix, Santa Clara, CA) ladder for 20 minutes at 5V/cm.  This gel 

contained ethidium bromide to visually observe the PCR product distribution.  The PCR 

product was confirmed as good quality and ready to proceed to PCR purification when the 

average product distribution was between 150 and 2000bp (Figure 9).   

CytoScan® HD Array PCR Purification:  Before the PCR product was purified, the 

aliquots of each sample were combined for a total of 397 µL (100µL from each well, minus 

3µL for the PCR gel).  After the samples were pooled, 720µL of Affymetrix CytoScan® 

purification beads were added to bind to the DNA in the PCR sample.  The DNA was 

separated using magnetic stands (MagnaRack, Life Technologies, Carlsbad, CA) that 

allowed the magnetic beads with bound DNA to be pulled aside.  The supernatant was 

removed and the pellet of DNA and beads was washed with 1mL of Affymetrix CytoScan® 

purification wash buffer.  The supernatant was then removed again with the use of 

magnetic stands.  DNA was eluted from the magnetic beads using 52µL of Affymetrix 

CytoScan® elution buffer and beads were pulled away from the DNA with the magnetic 

stand; 47µL of the eluted sample was removed and transferred to a fresh 96-well plate.  
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Figure 9. Verification of the PCR product.  The product was of good quality when 
the average product distribution was between 150 and 2000bp on a 2% TBE gel. 
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CytoScan® HD Array PCR Quantification:  After the PCR product was purified, the 

quantification of the DNA was determined using a NanoDrop® Spectrophotometer ND-

1000 (NanoDrop Technologies, Inc., Wilmington, DE).  The DNA sample was first diluted 

using 18µL of Affymetrix nuclease-free water and 2µL of product.  The NanoDrop® was 

blanked with water and 2µL of the diluted sample was measured at OD260/OD280.  The 

DNA yield was within the acceptable range of 250ng/µL and above in order for 

fragmentation to be initiated. 

CytoScan® HD Array Fragmentation:  The fragmentation stage has critical 

temperature sensitivities and in order to ensure uniform, reproducible fragmentation this 

step was performed rapidly on ice and in a plate centrifuge at 4oC.  The fragmentation 

master mix was made using Affymetrix CytoScan® reagents with a concentration of 

2.25U/µL.  The master mix included chilled Affymetrix nuclease-free water, 10X 

fragmentation buffer, and fragmentation reagent (Figure 10a).  An amount of 10µL of the 

fragmentation master mix was added directly to the purified PCR products in a 96-well 

plate on ice.  The plate was transferred to a preheated thermocycler and the CytoScan® 

fragment program was performed for approximately 50 minutes (Figure 10b).  

Once the fragmentation program was completed, the sample was removed and 

the products were checked on a 4% TBE (Lonza Group, LTD, Switzerland) precast gel at 

5V/cm for 19 minutes.  The finished product was diluted using 4µL of the finished 

fragmented sample with 28µL of water and a further dilution of 8µL of the original dilution 

added to 12µL of water.  The final diluted fragmentation sample was loaded onto the gel 

against the TrackIt™ 25bp DNA ladder (Life Technologies, Carlsbad, CA) to determine the 

distribution of the product.  The majority of fragmented PCR products were between 25 to 

125bp and were ready to proceed to labeling (Figure 11). 
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Figure 10.  Fragmentation CytoScan® protocol.  (a) The fragmentation master 
mix utilized chilled Affymetrix CytoScan® reagents with a concentration of 2.25U/µL 
and included Affymetrix nuclease-free water, 10X fragmentation buffer, and 
fragmentation reagent.  (b) The fragmentation reaction was performed in a 
thermocycler for approximately 50 minutes. 
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Figure 11. Verification of the fragmentation product.  The product was of good 
quality when the majority of the product distribution was between 25 and 125bp on 
a 4% TBE gel. 
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CytoScan® HD Array Labeling:  The fragmented PCR product was labeled using 

terminal deoxynucleotidyl transferase (TdT) enzyme.  The master mix solution was 

composed of Affymetrix CytoScan®5X TdT buffer, 30mM DNA labeling reagent, and TdT 

enzyme (Figure 12).  A portion (19.5 µL) of the labeling mix was added to the remaining 

51.0µL of fragmented DNA; 4.0µL was used for the fragmentation gel analysis.  The plate 

was transferred to a preheated thermocycler and the CytoScan® label program was 

performed for approximately 4 hours and 15 minutes (Figure 12b).   

CytoScan® HD Array Hybridization:  Target hybridization was performed using the 

Hybridization Oven 645® at a temperature of 50oC at a rotation speed of 60rpm.  Arrays 

for each patient were recorded and entered into the Affymetrix GeneChip® Command 

Center® 3.2 and then left at room temperature until they were loaded.  A hybridization 

master mix was made using the Affymetrix CytoScan® Hyb buffer part 1, Hyb buffer part 

2, Hyb buffer part 3, Hyb buffer part 4, and oligo control reagent 0100 (Figure 13a) and 

190µL of the mix was added to the labeled samples.  The plate was placed into the 

thermocycler and the CytoScan® Hyb program ran for about 10 minutes (Figure 13b).  

When the thermocycler reached 49oC, the samples were injected into the septa of the 

array and covered with ½” Microtube Tough-Spots (Diversified Biotech, Boston, MA).  The 

arrays were placed into an oven tray evenly spaced and allowed to rotate at the 

appropriate temperature and speed for 16 to 18 hours.   

OncoScan® FFPE Assay Technique 

The OncoScan® Assay utilized the Molecular Inversion Probe (MIP) assay 

technology for genome wide copy number and LOH profiles.  This test was developed to 

perform well with highly degraded DNA.  This protocol is typically reserved for fixed 

formalin paraffin embedded (FFPE) preserved tumor samples of various ages and with 
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Figure 12. Labeling CytoScan® protocol.  (a) The labeling master mix utilized 
Affymetrix CytoScan®5X TdT buffer, 30mM DNA labeling reagent, and TdT 
enzyme.  (b) The labeling reaction was performed in a thermocycler for 
approximately 4 hours and 15 minutes. 
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Figure 13. Hybridization CytoScan® protocol.  (a) The hybridization master mix 
utilized Affymetrix CytoScan® Hyb buffer part 1, Hyb buffer part 2, Hyb buffer part 
3, Hyb buffer part 4, and oligo control reagent 0100.  (b) The labeling reaction was 
performed in a thermocycler for approximately 10 minutes. 



www.manaraa.com

54 

 

100 ng DNA of starting material, which makes it the ideal assay for clinical cancer 

research.  This laboratory validated the use of this assay on DNA extracted from whole 

bone marrow specimen for future research use.  The OncoScan® Assay protocol was 

optimized for processing 6 to 24 samples in parallel and followed five stages of annealing, 

gap fill through first PCR, second PCR, HaeIII digestion, and hybridization.  After the 

arrays were hybridized, the chips were then washed and stained and scanned using the 

Affymetrix GeneChip® Scanner 3000 7G, controlled by the Affymetrix GeneChip® 

Command Center.  The exported array results were analyzed using the Affymetrix 

Chromosome Analysis Suite (ChAS) software. 

OncoScan® Annealing:  Genomic DNA was normalized to 12ng/µL using 1X TE (pH 

8.0) with reduced EDTA (0.1Mm EDTA) before annealing of probe mixes occurred.  A 

master mix of Affymetrix OncoScan® buffer A, copy number probe mix 1.0, and somatic 

mutation probe mix 1.0 was prepared on ice (Figure 14a).  Only 3.4µL of this master mix 

was aliquoted to 6.6µL of DNA leaving a total volume of 10µL.  The OncoScan® positive 

and negative control included in the reagent kit was also added to the 96-well plate.  The 

plate was placed into a GeneAmp™ PCR System 9700 thermocycler (Applied 

Biosystems, Waltham, MA) and the OncoScan® Anneal program ran overnight, for 

approximately 16-18 hours (Figure 14b).   

OncoScan® Gap Fill through first PCR:  After the overnight anneal program, the 

plate was removed and the OncoScan® Gap Fill program was started.  Once the 

temperature reached 58oC, the program was paused.  The gap fill master mix was created 

and contained Affymetrix OncoScan® nuclease-free water, buffer A, SAP recombinant 

(1U/µL), and gap fill enzyme mix (Figure 15a).  The mix was made on ice and 14.0µL was  
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Figure 14. Anneal OncoScan® protocol.  (a) The anneal master mix utilized 
Affymetrix OncoScan® buffer A, copy number probe mix 1.0, and somatic mutation 
mix 1.0.  (b) The annealing reaction was performed in a thermocycler overnight for 
16-18 hours. 
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Figure 15.  Gap fill OncoScan® protocol.  a) The gap fill master mix utilized 
OncoScan® nuclease-free water, buffer A, SAP recombinant, and gap fill enzyme.  
b) The dNTP master mixes utilized nuclease-free water and the specific dNTP 
mixes (AT and GC).  c) The cleavage master mix utilized cleavage buffer and 
enzyme.  d) The gap fill reaction was performed in a thermocycler for approximately 
90 minutes.   
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added to each reaction for a final volume of 24.0µL and left on ice while the first PCR plate 

was created. 

The first PCR step required that the AT mix and GC mix be created independently 

in order to avoid contamination.  Each mix contained Affymetrix OncoScan® nuclease-

free water and the specific dNTPs (A/T or GC) (Figure 15b).  A fresh 96-well plate, labelled 

first PCR, was used and designated rows for AT and GC were labeled.  From the anneal 

plate, 10µL of the gap fill reactions were aliquoted into the wells of the two designated 

rows on the first PCR plate.  The plate was loaded on the thermocycler and the Gap Fill 

program was resumed at 58oC for 11 minutes.  After this time, the program was paused 

and the first PCR plate removed to add 4µL of the A/T mix to each of the wells in the A/T 

designated row.  The same amount of G/C mix was added to each of the wells in the G/C 

designated row on the first PCR plate.  The plate was loaded back onto the thermocycler 

and the program was resumed for another 11 minutes.  The program was paused before 

the cycler ramped down to 37oC.  The first PCR plate was removed and 3µL of Affymetrix 

OncoScan® Exo Mix reagent was added to each reaction for a final volume of 17µL.  The 

plate was loaded back onto the cycler and the program was resumed.  During the last 5 

minutes of the program at 95oC, the cleavage master mix was created using Affymetrix 

OncoScan® cleavage buffer and cleavage enzyme (Figure 15c).  The program was 

paused when the thermocycler reached the start of the 37oC step and 25µL of the 

cleavage mix was added to each reaction.  The thermocycler program was resumed and 

finished after 30 minutes (Figure 15d).   

The first PCR master mix was created during the last 5 minutes of the Gap Fill 

program and consisted of Affymetrix OncoScan® PCR mix and Taq polymerase (Figure 

16a).  Once the Gap Fill program was completed, the plate was removed and 25µL of the  
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Figure 16.  First PCR OncoScan® protocol.  a) The first PCR master mix utilized 
OncoScan® PCR mix and Taq polymerase.  b) The first PCR reaction was 
performed in a thermocycler for approximately 20 minutes. 
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PCR master mix was added to each reaction.  The OncoScan® First PCR program on the 

thermocycler was started and once the cycler reached 60oC the plate was loaded and ran 

for approximately 20 minutes (Figure 16b).   

OncoScan® Second PCR:  The second PCR stage occurred in the post-PCR lab.  A 

fresh 96-well plate was labeled as the second PCR plate and designated AT and GC rows 

were marked.  The second PCR master mix utilized OncoScan® PCR mix and Taq 

polymerase and 25µL of this mix was aliquoted to each of the designated wells (Figure 

17a).  From the first PCR plate, 2µL were removed and added to the corresponding wells 

on the second PCR plate.  This plate was loaded onto the thermocycler and the 

OncoScan® Second PCR program ran for approximately 20 minutes (Figure 17b).   

A quality control gel was used to check the first PCR product.  From the first PCR 

plate, 8µL from each well were loaded onto a 3% precast agarose gel with a 50bp ladder 

(New England Biolabs, Ipswich, Massachusetts).  The gel ran for 15 minutes at 150V/cm 

and the PCR products were determined of good quality when they were approximately at 

120bp (Figure 18).   

OncoScan® Digestion:  Smaller DNA fragments were generated to improve the 

sample hybridization onto the array during the HaeIII digestions.  A fresh 96-well plate 

labeled HaeIII was used and the appropriate AT and GC rows were designated.  The 

digestion master mix utilized OncoScan® buffer B, HaeIII enzyme, and exo enzyme 

(Figure 19a).  From the master mix, 20µL was aliquoted to the appropriate wells of the 

HaeIII plate with 10µL of the second PCR amplified reaction.  The plate was loaded on 

the thermocycler and the OncoScan® HaeIII program ran for approximately 100 minutes 

(Figure 19b). 



www.manaraa.com

60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.  Second PCR OncoScan® protocol.  a) The second PCR master mix 
utilized OncoScan® PCR mix and Taq polymerase.  b) The second PCR reaction 
was performed in a thermocycler for approximately 20 minutes. 
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Figure 18.  Verification of the first PCR product.  The product was of good quality 
when product was at 125bp on a 3% TBE gel.   
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Figure 19.  HaeIII Digestion OncoScan® protocol.  a) The HaeIII digestion 
master mix utilized OncoScan® buffer B, HaeIII enzyme, and exo enzyme.  b) The 
HaeIII digestion reaction was performed in a thermocycler for approximately 100 
minutes. 
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The quality of the HaeIII digestion was determined by running a 3% precast 

agarose gel.  The thermocycler was paused after the 88 minutes at 37oC and 4µL of the 

digest reaction was removed from each well.  The thermocycler program was resumed 

and the gel was loaded with 4µL of the reaction and 3.5µL of a 50bp ladder and ran for 15 

minutes at 150V/cm.  The gel was examined and determined of good quality when doublet 

bands around 40-70bp were observed (Figure 20).      

OncoScan® Hybridization:  Target hybridization was performed using the 

Hybridization Oven 645® at a temperature of 49oC at a rotation speed of 60rpm.  Two 

arrays for each patient (AT and GC) were recorded and entered into the Affymetrix 

GeneChip® Command Center® 3.2 and then left at room temperature until they were 

loaded.  A hybridization master mix was made using the Affymetrix OncoScan® nuclease-

free water and hybridization mix (Figure 21a).  To a new 96-well plate labeled Hyb, 190µL 

of the mix was added to the appropriate wells for each reaction.  From the HaeIII plate, 

22µL of the digestion reaction was aliquoted to the hybridization plate.  The plate was 

loaded into the thermocycler and the OncoScan® Hybridization program ran for about 15 

minutes (Figure 21b).  When the thermocycler reached 49oC, the samples were injected 

into the septa of the array and covered with ½” Microtube Tough-Spots (Diversified 

Biotech, Boston, MA).  The arrays were placed into an oven tray evenly spaced and 

allowed to rotate at the appropriate temperature and speed for 16 to 18 hours.   

Array Washing and Staining:  The hybridized arrays (CytoScan® and OncoScan®) 

were removed from the hybridization oven between 16 and 18 hours from the time of 

incubation.  Tough-Spots were removed from the septa on the arrays before being 

inserted into the array-designated modules of the GeneChip® Fluidics Station 450.  The 

fluidics station was primed with Affymetrix GeneChip® Wash A and Wash B before  
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Figure 20.  Verification of the HaeIII digestion product.  The product was of good 
quality when doublet bands were observed at 40-70bp on a 3% TBE gel.   
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Figure 21.  Hybridization OncoScan® protocol.  a) The hybridization master mix 
utilized OncoScan® nuclease-free water and hybridization mix.  b) The hybridization 
reaction was performed in a thermocycler for approximately 15 minutes. 
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proceeding with the washing and staining stage.  In the position labelled 1, 500µL of stain 

buffer 1 was placed into a 1.5mL microfuge tube.  Position 2 contained a 1.5mL microfuge 

tube containing 500µL of stain Buffer 2 and 800µL of array holding buffer was aliquoted 

into a 1.5mL microfuge tube and placed into position 3.  The fluidics protocol was started 

using the Affymetrix GeneChip® Command Console and ran for approximately 1 hour.   

Array Scanning:  When the wash and stain procedure was finished, arrays were 

removed and checked for bubbles or air pockets and returned to the fluidics station if 

present.  Once air was removed, the septa on the arrays were closed using ½” Microtube 

Tough-Spots and placed into the GeneChip® Scanner 3000 7G and scanned.   

Microarray Analysis:  Analysis was performed with the Affymetrix Chromosome 

Analysis Suite (ChAS) software.  The classification of the microarray results was based 

on the reference ranges established in validation for the array test type performed by this 

laboratory.  The detection rate for mosaicism was determined above 20-25% by validation.  

The size threshold for gains was set at 5Kb and losses set at 10Kb.  The threshold for 

LOH was set at 3120Kb.  Analysis of each chromosome was performed using the 

software, aberrations were flagged by the system, and the size of the anomaly was 

determined.  Further investigation of each chromosome was performed by a manual 

examination of the smooth signal for peaks and dips to determine gains or losses not 

flagged by the ChAS software (Figure 22).  When these aberrations were observed, the 

location and size was manually determined.  A benign classification was determined when 

no genes were seen, an overlap with the Database of Genomic Variants (DGV) or NCBI 

Database for Genomic Structural Variants (dbVAR) was present, or when an overlap with 

a recurring del/dup region or CNV based upon the Fullerton and Cooper overlap maps 

occurred.  Unknown clinical significance (UCS) was determined with greater than 10Kb  
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backbone, greater than 5Kb intragenic involving exons or a single gene and at the time of 

the analysis there was not sufficient evidence available for a determination of clinical 

significance.  A designation of pathogenic was given when the abnormality was 

cytogenetically visible, when overlapped with a known cancer gene was observed, or 

when it had been documented as pathogenic in multiple peer-reviewed publications.   

 

 

 

 

 

 

  



www.manaraa.com

69 

 

 

 

 

 

 

 

 

 

 RESULTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

70 

 

Patient Demographics 

From January 1, 1990 to December 31, 2015, bone marrow aspirates and 

peripheral blood samples were collected for conventional cytogenetic and/or FISH 

analysis on cases with a clinical diagnosis of MDS.  A total of 3992 specimens from 2948 

individual cases were studied.  The 2948 cases included 1666 males and 1282 females 

with an age range of 0 to 99 years with the highest prevalence in the 7th and 8th decade of 

life (Figure 23).  This data coincides with the current knowledge that MDS is frequently 

observed in the elderly population.  Of the 3992 total number of specimens received into 

the laboratory, 306 specimens (7.6%) were from pediatric or young adult cases, or those 

between the ages of 0 and 29.  Further delineation of the younger population shows 205 

(5.1%) specimens were from pediatric only patients aged 0 to 18 years and 101 (2.5%) 

specimens were from young adults or those between 19 to 29 years of age (Figure 24). 

Pediatric Patient Demographics 

From the given time span, our laboratory analyzed 306 bone marrow or peripheral 

blood samples with a clinical diagnosis of MDS from pediatric and young adult cases, or 

those between the ages of 0 and 29 years.  These samples were from 177 cases.  Over 

the given time span, a variable number of specimens ranging from 1 to 12 were analyzed 

from each patient, thus explaining a total of 306 consecutive specimens.  The younger 

population of MDS cases consisted of 95 males and 82 females with the most prevalent 

age of occurrence in the first year of life (Figure 25).  Of these cases, 205 specimens were 

collected from 119 pediatric cases rangin16g from 0-18 years of age.  The specimens 

from pediatric cases were from 65 males and 54 females.  The young adult population, 

19-29 years of age, consisted of 101 specimens from 58 cases with the most prevalent 

age of MDS at 19 years and consisted of 30 males and 28 female cases.   
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Figure 23.  Demographic distribution of MDS.  The 2948 bone marrow or 
peripheral blood cases with a clinical diagnosis of MDS over the time span of 1990-
2015 included 1666 males and 1282 females.  The age ranged from 0 to 99 years 
of age with the highest prevalence in the 7th and 8th decade of life.   
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Figure 24.  Percentage of MDS specimens per age group.  From the 3992 total 
number of specimens received in our laboratory over the given time span of 1990-
2015, 205 (5.1%) specimens were from the pediatric population aged 0 to 18 years 
and 101 (2.5%) specimens were from young adult samples (19 to 29 years).  The 
majority of the specimens, 3686 (92%), were from the adult population, aged 30 
years and above.   
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Figure 25.  Demographic distribution of pediatric and young adult MDS.  From 
1990-2015, this laboratory analyzed 306 bone marrow or peripheral blood samples 
with a clinical diagnosis of MDS from 177 pediatric and young adult cases.  The 
pediatric cases consisted of 95 males and 82 females with the most prevalent ages 
of occurrence in the first year of life.  
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Conventional Cytogenetic and FISH Analyses  

The cytogenetic and FISH data comparison was performed on the total number of 

specimens received into the laboratory.  Over the given time span of 1990 to 2015, a total 

of 3992 MDS specimens from 2948 individual cases were studied in our laboratory.  

Cytogenetic and FISH analyses were performed on each specimen in order to detect 

chromosome aberrations and to accurately determine disease clonality and monitor 

disease progression.     

Of the 3992 MDS specimens, 2353 (58.9%; 2353 / 3992) presented a normal 

cytogenetic karyotype and FISH results.  A total of 1639 (41.1%; 1639 / 3992) samples 

presented abnormal findings by conventional cytogenetics and/or FISH analyses.  One of 

the hallmark chromosome abnormalities commonly observed in MDS patients [-5/del(5q), 

-7/del(7q), +8, and del(20q)] (Figure 26a-d) was observed in 1155 of the abnormal studies 

(70.5%; 1155 / 1639) (Figure 27).  Abnormalities not typical of MDS identified by 

cytogenetics and confirmatory or concurrent FISH included chimerism of donor and host 

cells in post-transplant patients, a variety of deletions and rearrangements, and random 

gains and losses of chromosomes not typically associated with MDS.  Each one of these 

were in frequencies of less than 1.5%.  In the adult population, an MDS-related 

abnormality was detected by cytogenetic karyotyping and/or FISH in 1099 specimens as 

either the sole anomaly or as part of a complex karyotype with more than one anomaly 

present, MDS-related or not.  The frequencies of each hallmark abnormality observed was 

determined for this population.  The most frequent MDS-related abnormality observed was 

-5/del(5q), seen in 519 adult samples.  The -7/del(7q) abnormality was the next most 

frequent abnormality as it was seen in 423 samples followed by +8 in 282 samples.   
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Cytogenetic/FISH Findings of 2353 Specimens from Adult MDS  
(≥30 Years of Age) Cases 

 

 

Figure 27.  Cytogenetic/FISH Findings of 2353 specimens from adult MDS 
(≥30 years of age) cases.  From the given time span, 2353 (58.9%) bone marrow 
or peripheral blood samples with a clinical diagnosis of MDS contained a normal 
cytogenetic karyotype and normal FISH results.  An abnormal cytogenetic 
karyotype and/or FISH analyses was observed in 1639 (41.1%).  From these 
samples, 1155 (70.5%) contained one of the four hallmark MDS chromosomal 
abnormalities of -5/del(5q), -7/del(7q), +8, or del(20q).  The remaining 484 (29.5%) 
of the cases contained an abnormality not typical of MDS.   
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The least frequent MDS-related abnormality observed in the adult population, or those 

over the age of 30, was del(20q) in 260 specimens (Table I).     

Conventional Cytogenetic and FISH Analyses of Pediatric Population 

MDS is a rare disease among pediatric and young adults, between the age of 0 

and 29 years.  A fraction of the total number of MDS specimens analyzed over the given 

time span included this population, 7.6% (306 / 3992).  Among the 306 specimens from 

pediatric and young adult cases, 230 (75.2%; 230 / 306) presented normal results by 

conventional cytogenetics and FISH analyses.  Among the 76 abnormal specimens 

(24.8%; 76 / 306), one or more of the hallmark MDS-related cytogenetic abnormalities was 

observed in 56 samples (73.7%; 56 / 76) (Figure 28).  The most frequent chromosomal 

abnormality observed was -7/del(7q) in 28 samples.  Trisomy 8 was observed in 13 

samples and del(20q) in 10 samples.  Unlike the adult population, among the pediatric 

and young adult specimens the -5/del(5q) was the least frequent abnormality observed in 

8 specimens (Table II).   

Further delineation between the pediatric (0-18) and young adult (19-29) 

population presented similar frequencies of MDS-related chromosome abnormalities thus 

providing the justification for expanding the pediatric analysis to include the young adults.  

Of the 205 pediatric only (0-18 years) specimens, 150 presented normal karyotypes and 

negative FISH results (73.2%; 150 / 205).  Of the 55 abnormal specimens (26.8%; 55 / 

205), 43 (78.2%; 43 / 55) samples contained one of the hallmark MDS-related cytogenetic 

abnormalities (Figure 29). Among the 101 young adult (19-29) specimens, 80 (79.2%; 80 

/ 101) presented normal cytogenetic and FISH findings.  Of the 21 (20.8%) abnormal 

specimens, 13 (61.9%; 13 / 21) contained one or more of the hallmark MDS-related  
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Table I. Characterization of the MDS-related chromosomal 
abnormalities detected by cytogenetic and FISH analyses in adult MDS.  
The most frequent MDS-related abnormality observed was -5/del(5q), seen in 519 
adult specimens followed by -7/del(7q) in 423 samples; and +8 in 282 samples.  
The least frequent MDS-related abnormality observed in the adult population was 
del(20q) in 260 samples. 
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Figure 28.  Cytogenetic/FISH findings of pediatric and young adult MDS.  From 
the given time span of 1990-2015, 230 pediatric and young adult specimens 
(75.2%) presented normal results by conventional cytogenetics and FISH analyses.  
Among the 76 (24.8%) abnormal samples, 56 (73.7%) contained one or more of 
the hallmark MDS-related cytogenetic abnormalities and an abnormality not typical 
of MDS was noted in 20 (26.3%) samples.   

Cytogenetic/FISH Findings of Pediatric and Young Adult MDS  
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Table II.  Characterization of the MDS-related chromosomal 
abnormalities detected by cytogenetic and FISH analyses in the 
pediatric/young adult population. In the pediatric and young adult population, 
0-29 years, the most frequent chromosomal abnormality observed was -7/del(7q) 
in 28 specimens.  Trisomy 8 was observed in 13 samples and del(20q) in 10 
samples.  The least frequent abnormality in the pediatric and young adult 
population was -5/del(5q) in 8 specimens. 
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Cytogenetic/FISH Findings of Pediatric MDS  
  

             

Figure 29.  Cytogenetic/FISH findings of pediatric MDS.  From 1990-2015, 205 
total pediatric only (0-18 years) specimens were analyzed and 150 (73.2%) of them 
had a normal cytogenetic karyotype and FISH analyses.  Out of the 55 specimens 
(26.8%) with abnormal findings, 43 specimens (78.2%) contained one of the 
hallmark MDS aberrations.   
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abnormalities (Figure 30).  The most frequent abnormality of -7/del(7q) was observed in 

17 pediatric samples.  Trisomy 8 and del(20q) was observed in 10 samples; and -5/del(5q) 

was only observed in five samples among the 0-18 age group.  Among the young adult 

population, -7/del(7q) was observed in 9 specimens and +8 and del(20q) was seen in 3 

samples each.  The least frequently observed abnormality of -5/del(5q) was observed in 

3 specimens from the 19-29 age group (Table III).   

The 20 specimens with a chromosome abnormality not typical of MDS had a range 

of abnormalities.  The most common other abnormality detected by cytogenetics and FISH 

in the younger population was constitutional trisomy 21, observed in 8 samples (14.2%; 8 

/ 56).   Other abnormalities included the following; chimerism of donor and host cells in 

post-transplant patients; loss of Y and 13; deletion of 6q; rearrangements of 11q, 14q, 

18q, 19q; and gain of chromosome 19.  Each one of these were in frequencies of 1.0% or 

less. 

Microarray Samples 

Between January 1, 2012 to January 1, 2015, bone marrow or peripheral blood 

from pediatric or young adult MDS cases was saved when the original specimen was in 

excess after all cytogenetic and FISH studies were performed.  These samples were used 

for extraction of DNA for high-resolution array studies.  These cases were chosen based 

solely on their volume of original specimen and not for their cytogenetic or FISH findings.  

From the 93 pediatric or young adult MDS cases received in the Human Genetics 

Laboratory between 2012-2015, only 28 specimens contained excess whole bone marrow 

or blood after cytogenetic and FISH studies and were from cases with a variety of ages 

and cytogenetic findings (Table IV).   
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Cytogenetic/FISH Findings of Young Adult MDS  
 

            

Figure 30.  Cytogenetic/FISH findings of young adult (19-29 years) MDS.  Over 
the given time span, 101 total specimens from young adult (19-29 years) 
specimens were analyzed and 80 (79.2%) presented normal cytogenetic and FISH 
findings.  Of the 21 (20.8%) abnormal specimens, 13 (61.9%; 13/21) contained one 
or more of the hallmark MDS-related abnormalities. 
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Table III.  Comparison of MDS-related abnormalities observed in the 
pediatric and young adult MDS populations.  The observance of the 
hallmark abnormality of -7/del(7q) was comparable between the two groups with 
this being the most observed aberration.  The next most frequent abnormalities 
included trisomy 8, del(20q), and -5/del(5q).   
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Table IV.  List of pediatric and young adult MDS specimens 
for microarray studies after karyotyping and FISH 
analyses.  The table lists the case ID, age of patient at time of 
intake, cytogenetic karyotyping and FISH results for the 28 cases 
sent for microarray testing. 
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Only five of these cases were from the young adult population, or those between 

the ages of 19 and 29.  From the total cases, 21 presented normal karyotypes (Figure 31) 

and FISH results (Figure 32).  Our justification for using cases with normal cytogenetic 

and FISH findings is due to the possible presence of cryptic abnormalities that can only 

be detected by high-resolution techniques.  The six cases with abnormal cytogenetic or 

FISH results contained the following abnormalities;  

45,XX,-7; 45,XY,-7; 45,XY,-7; 46,XX,inv(11)(q13q23); 46,XY,del(20)(q12q13); and 

46,XY,del(20)(q12q13).       

Microarray Results 

Out of the 28 pediatric and young adult MDS specimens available, microarray 

analysis was performed on 26 cases.  Two cases were not utilized on array due to 

insufficient DNA yields.  From the 26 cases, 15 (58%; 15 / 26) were found to contain 

genetic alterations that were determined to be pathogenic or likely pathogenic (Figure 33).  

From this study, 33 gene aberrations detected were determined as pathogenic or likely 

pathogenic and were MDS-associated genes and/or genes involved in hematopoiesis, cell 

cycle proliferation/regulation, apoptosis, known tumor suppressor genes, or other disease-

associated genes (Table V).  Of particular importance, eight of these genetic aberrations 

were detected in more than one case.  Further analysis found that out of the five young 

adult specimens, three specimens had a detectable pathogenic aberration and some of 

these pathogenic changes were observed in the pediatric population, 0-18 age group.  

These results further justify our non-restrictive use of young adult specimens included into 

this pediatric study. 

 



www.manaraa.com

87 

 

  

 

 F
ig

u
re

 3
1.

  R
ep

re
se

n
ta

tiv
e 

Im
ag

es
 d

ep
ic

tin
g

 n
o

rm
al

 c
yt

o
g

en
et

ic
 k

ar
yo

ty
p

es
.  

T
hi

s 
im

ag
e 

de
pi

ct
s:

 a
) 

C
a

se
 1

 s
ho

w
in

g 
a 

no
rm

al
 k

ar
yo

ty
pe

 o
f 

46
,X

X
.  

b
) 

N
o

rm
al

 k
ar

yo
ty

p
e 

(4
6,

X
Y

) 
ob

se
rv

e
d 

in
 C

as
e 

2.
  

 

 

 

 

4
6,

X
Y

 B
o

n
e

 M
ar

ro
w

 

 

 

 

4
6,

X
X

 B
o

n
e

 M
ar

ro
w

 



www.manaraa.com

88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

F
ig

u
re

 3
2.

 R
ep

re
se

n
ta

tiv
e 

n
o

rm
al

 M
D

S
 F

IS
H

 im
ag

es
.  

F
ro

m
 C

a
se

 1
, t

w
o 

co
pi

e
s 

of
 5

p
15

.3
1,

 5
q

31
, 

7q
3

1,
 7

 c
en

tr
om

er
es

, 
8 

ce
n

tr
o

m
er

es
, 

a
nd

 t
w

o 
co

pi
es

 e
a

ch
 o

f 
2

0q
1

2 
an

d
 2

0q
1

3 
is

 d
et

e
ct

e
d 

b
y 

F
IS

H
. 



www.manaraa.com

89 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33.  Microarray findings of pediatric and young adult MDS cases.  From 
the 26 total pediatric and young adult MDS cases, microarray determined that over 
58% (15 cases) contained a genetic alteration that was determined to be 
pathogenic or likely pathogenic.    

       Microarray Findings of Pediatric and Young Adult MDS Cases 
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Table V.  Characterization of genetic aberrations detected by 
microarray.  A total of 33 genes were altered among the pediatric and young adult 
MDS cases by microarray.  The top eight gene aberrations listed in the table were 
detected in more than one case.  This table lists the gene name, the chromosome 
and linear location, the copy number state, and the number of cases that contained 
the aberration. 
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Case Studies 

Case 1 

Case 1 was a bone marrow aspirate from a 2-year-old female with a normal 

cytogenetic karyotype and negative for the MDS FISH panel.  High-resolution array 

studies using the ChAS software detected 20 aberrations in the form of gains, losses, or 

regions of LOH.    Based upon the call parameters previously discussed, 19 of the 20 

aberrations were classified as benign.  A 532kbp pathogenic gain was observed by 

manual examination of the smooth signal on chromosome 16q24.3 located at chr16: 

88,722,097 - 89,254,728, which overlaps with the CBFA2T3 gene (16: 88,874,854 - 

88,977,198) (Figure 34).  This gene is associated with AML and therapy-related myeloid 

malignancies as determined from the Online Mendelian Inheritance in Men® (OMIM) 

online catalogue and the National Center for Biotechnology Information (NCBI).  

Case 2 

Case 2 was a bone marrow aspirate from a 16-year-old male that presented a 

normal karyotype and was negative for the MDS FISH panel.  There were 32 benign 

aberrations based on the classification criteria.   

Case 3 

A bone marrow aspirate from a 10-year-old male presented a normal cytogenetic 

karyotype and negative FISH analyses.  This case detected 32 aberrations in the form of 

gains, losses, or regions of LOH and all were classified as benign. 
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Case 4 

In Case 4, high-resolution array studies using the ChAS software detected 41 

aberrations in the form of gains, losses, or regions of LOH; 39 of the 41 aberrations were 

classified as benign.  Two aberrations were determined to overlap with pathogenic genes.  

A 3,558kbp mosaic gain was detected by the ChAS software on chromosome 1p36.33 

located at chr1: 849,466 - 4,408,084 which overlaps with the PRDM16 gene (1: 3,068,226 

- 3,438,620), an MDS-related gene (Figure 35a).  Further examination of the smooth signal 

in ChAS detected a 247kbp loss on chromosome 6p21.2 located at chr6: 36,988,591 - 

37,236,435.  This aberration overlaps with the PIM1 gene (6: 37,170,145 - 37,175,427), a 

known oncogene involved in hematopoiesis (Figure 35b). 

Case 5 

In case 5, FISH analyses were positive for a deletion of 20(q12q13) in 13% of the 

interphase cells (Figure 36).  This deletion was not detected by microarray studies due to 

the low-level mosaicism.  However, microarray detected a 98kbp likely pathogenic deletion 

on chromosome 2 within the p23.3 region.  The location of this deletion ranged from 

29,607,409 through 29,706,398, which overlaps with a small portion of the ALK gene (2: 

29,192,773 - 29,921,610), a known oncogene involved in various cancers as determined 

by OMIM and NCBI (Figure 37).     

Case 6 

 This bone marrow aspirate was from a 3-month old female with a normal 

karyotype and negative for the MDS FISH panel.  Twenty-six aberrations were classified 

as benign in case 6 by microarray studies.  Two benign aberrations originally predicted to 

overlap with disease-causing genes were determined to be outside of the genes of interest  
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Figure 35.  Microarray results for Case 4.  Two pathogenic 
aberrations were detected and were determined to overlap 
with pathogenic genes. a) A 3,558kbp mosaic gain was 
detected on chromosome 1p36.33 which overlaps with the 
PRDM16 gene, an MDS-related gene.  b) A 247kbp loss was 
observed on chromosome 6p21.2 which overlaps the PIM1 
gene, a known oncogene involved in hematopoiesis.   
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Figure 36.  FISH results for Case 5.  The FISH MDS panel detected a deletion of 
20q12 and 20q13 with normal karyotypes in case 5.  This image shows only one 
copy of each of the 20q probes.   
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Figure 37.  Microarray results for Case 5.  One likely pathogenic aberration was 
detected and determined to overlap with a pathogenic gene. A 98kbp deletion was 
observed on chromosome 2p23.3 which overlaps a small portion of the ALK gene.   
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after further detailed examination following initial review using the ChAS software.  

Examination and comparisons of the aberration and gene locations determined that these 

aberrations did not result in the loss of the CASP9 (1p36.13) and FGFR1OP (6q27) genes 

as previously predicted (Figure 38a-b).     

Case 7 

Case 7 was a bone marrow aspirate from an 11-year-old female that presented an 

abnormal cytogenetic karyotype of 46,XX,inv(11)(q13q23) in 17 cells and was abnormal 

for the MLL (11q23) Breakapart FISH probe in 67% of interphase cells (Figure 39).   The 

remaining MDS FISH panel was negative.  The disruption of this gene cannot be detected 

by microarray studies.  Balanced genomic alterations are not determined by microarray 

but three additional changes were determined to overlap pathogenic genes.  A 774kbp 

gain was observed on chromosome 1p36.33 located at chr1: 2,910,012 - 3,684,184 that 

overlaps with the MDS-related PRDM16 gene (1: 3,068,226 - 3,438,620).  Manual 

examination detected a 249kbp gain on chromosome 11p11.2 located at chr11: 

44,100,800 - 44,350,320 that overlaps the tumor suppressor EXT2 gene (11: 44,095,548 

- 44,245,429).  Finally, a 674kbp loss on chromosome 22q12.1 located at chr22: 

28,680,003 - 29,354,770 that overlaps the CHEK2 gene (22: 28,687,742 - 28,741,904) 

was observed.  The CHEK2 gene has been shown to play a role in cell proliferation and 

tumor progression (Figure 40a-c).   

Case 8 

A normal karyotype was presented in case 8 and FISH studies were cancelled by 

the requesting physician.  High-resolution array studies using the ChAS software detected 

32 benign aberrations.   
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Figure 38.  Microarray results for Case 6.  ChAS originally predicted the overlap 
of a) 349kbp loss on chromosome 1p36.13, overlapping the apoptotic gene CASP9 
and b) 525kbp loss on chromosome 6q27, overlapping the MPD-related gene 
FGFR1OP.  Further examination determined the losses as benign.  The actual 
locations were over 144kbp and 148kbp downstream of the gene, respectively.  
This emphasizes the need for detailed examination following initial review using 
ChAS software.   
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Figure 40.  Microarray results for Case 7.  Three 
pathogenic aberrations were detected and were 
determined to overlap pathogenic genes.  a) A 774kbp 
gain was detected on chromosome 1p36.33 which 
overlaps the MDS-related PRDM16 gene.  b) A 249kbp 
gain on chromosome 11p11.2 was observed that 
overlaps the EXT2 gene, known to have tumor 
suppressor roles. c) A 674kbp loss on chromosome 
22q12.1 that overlaps the CHEK2 gene was observed 
and has been shown to play a role in cell proliferation 
and tumor progression.   

 

 

 



www.manaraa.com

101 

 

Case 9 

Case 9 was a bone marrow aspirate from a 14-year-old male with a normal 

karyotype.  FISH studies were not performed since it was not ordered by the requesting 

physician.  A total of 42 aberrations were detected and classified as benign by microarray 

studies.   

Case 10 

In case 10, we utilized the OncoScan® High-resolution array studies.  It is 

important to note that the ChAS software quality control of the MAPD, a standard deviation 

of the variation of the probe pair ratios, indicated that the quality of these results may have 

been potentially compromised.  The aberrations detected included a 2.5Mbp gain on 

1p36.33 (PRDM16 gene); a 3.7Mbp LOH on 1p34.2 (MPL gene); a 4.0Mbp LOH on 1q25.2 

(ABL2 gene); a 39kbp loss on 2p23.2 (portion of the ALK gene); a 268kbp loss on 6p25.3 

(IRF4 gene); a 417kbp loss on 8p21.2 (CLU gene); a 47kbp loss on 9p21.3 (CDKN2B 

gene); a 6.0Mbp LOH on 9p21.1 (PAX5 gene); a 3.8Mbp gain on 9q34.11 (ADAMTS13 

gene); and a 32.6Mkbp gain on 16p13.3 (ERCC4 and MYH11 gene) (Table VI).  These 

genes have functions ranging from apoptosis, oncogenic potential, and tumor 

suppression.  Other genes detected have known disease associations including AML, 

ALL, TCP, FA, NHL, MDS, and chronic myelogenous leukemia (CML).   

Case 11 

Case 11 was a bone marrow aspirate from a 7-year-old male that presented an 

abnormal cytogenetic karyotype of 45,XY,-7 in seven cells and positive for monosomy 7 

by FISH in 12% of interphase cells (Figure 41).  Due to the low-level mosaicism of this 

abnormality, microarray studies were not able to detect monosomy 7.  However, five  
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pathogenic aberrations were detected utilizing OncoScan®.  The aberrations detected 

included a 47kbp loss on 9p21.3 (CDKN2B gene); a 4.4Mbp LOH on 9p13.3 (PAX5 gene); 

a 32.6Mbp gain on 16p13.3 (ERCC4 and MYH11 gene); a 1.1Mbp gain on 16q24.3 

(FANCA gene); and a 3.5Mbp gain on 17q12 (RARA gene) (Table VII).  These genes have 

been associated with tumor suppression and also have known disease associations with 

AML, ALL, CML, TCP, and FA.   

Case 12 

Case 12 was a peripheral blood from a 7-month old male with an abnormal 

cytogenetic karyotype of 45,XY,-7 in four cells and positive for monosomy 7 by FISH in 

23% of interphase cells.  The remaining probes in MDS FISH studies were not requested 

(Figure 42).   Two aberrations were determined to overlap with pathogenic genes using 

OMIM and NCBI.  A 197kbp gain was observed on chromosome 6p25.3 located at chr6: 

241,540 - 439,182 which overlaps with the IRF4 gene (6: 391,738 - 411,442), a known 

oncogene.  A 298kbp loss on chromosome 7p12.2 located at chr7: 50,173,182 - 

50,471,578 was also observed that overlaps with the ALL-related IKZF1 gene (7: 

50,303,464 - 50,405,100) (Figure 43).  

Case 13 

Case 13 was a bone marrow aspirate from a 15-year-old female presenting an 

abnormal cytogenetic karyotype of 45,XX,-7 in nine cells and positive for monosomy 7 in 

28% of interphase cells by FISH (Figure 44).  A total of 45 benign changes were observed 

by microarray.  The level of mosaicism for this case was slightly above the validated 

detection rate for this assay (20-25%), yet monosomy 7 was not able to be detected by 

microarray.     
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Case 14 

Case 14 was a bone marrow aspirate from a 15-year-old female with a normal 

karyotype and FISH studies.  High-resolution array studies depicting only benign 

aberrations was observed.   

Case 15 

In case 15, microarray detected three aberrations that overlapped pathogenic 

genes.  A 179kbp loss was observed on chromosome 6p25.3 located at chr6: 222,619 - 

402,086 which overlaps a portion of the IRF4 gene (6: 391,738 - 411,442), a known 

oncogene.  On chromosome 11q22.1 located at chr11: 101,752,252 - 102,239,809, a 

287kbp loss was observed that overlaps the YAP1 gene (11: 102,110,253 - 102,233,422), 

a gene with apoptotic functions.  A 288kbp partial loss in the PTPN11 gene (12: 

112,418,731 - 112,509,917), known to be associated with MDS, was detected on 

12q24.13 (chr12: 112,744,633 - 112,983,024) (Figure 45a-c).   

Case 16 

Case 16 was a bone marrow aspirate from a 19-year-old female presenting normal 

cytogenetic and FISH analyses and two pathogenic aberrations by microarray.  A 690kbp 

gain overlapping the MDS-related PRDM16 gene (1p36.33) and a 216kbp loss 

overlapping a portion of the IRF4 oncogene (6p25.3) was detected (Figure 46).   

Case 17 

DNA from the excess whole bone marrow for case 17 was extracted, however, due 

to a poor quality of DNA (less than 5µg/mL) it could not be used for microarray studies. 

This case presented normal cytogenetic and FISH analyses (Figure 47).    
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Figure 45.  Microarray results for Case 15.  Three 
aberrations overlapping a) a 179kbp loss on 
chromosome 6p25.3 which overlaps with a portion of 
the IRF4 oncogene;  b) a 287kbp loss on chromosome 
11q22.1 overlapping the YAP1 gene, which is involved 
in apoptotic functions; and c) a 288kbp loss partially 
involving the PTPN11 gene located on chromosome 
12q24.13 and implicated in MDS.   
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Figure 46.  Microarray results for Case 16.  Two aberrations were 
detected that overlap with pathogenic genes.  a) A 690kbp gain was 
observed on chromosome 1p36.33 which overlaps the MDS-related 
PRDM16 gene.  b) A 216kbp loss on chromosome 6p25.3 that overlaps 
a portion of the oncogene IRF4 gene was also observed. 
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Case 18 

Case 18 was a bone marrow aspirate from a 13-year-old male with a normal 

karyotype, FISH, and microarray studies.    

Case 19 

Case 19 was a bone marrow aspirate from a 1-year-old male with a normal 

karyotype and FISH results and one pathogenic aberration by microarray.  A 471kbp loss 

was detected on chromosome 1q32.1 located at chr1: 200,239,873 - 200,711,145 and 

was determined to overlap with KIF4 gene (1: 200,551,496 - 200,620,790), a known 

disruptor of the cell cycle (Figure 48).   

Case 20 

Two aberrations were detected by microarray in case 20 and were determined to 

overlap with pathogenic genes.  A 229kbp likely pathogenic loss was observed on 

chromosome 6p21.2 located at chr6: 45,198,969 - 45,428,856 which included a portion of 

the tumor suppressor RUNX2 gene (6: 45,327,799 - 45,664,031).  A 26kbp gain was 

detected on chromosome 16p13.11 located art ch16: 15,801,192 - 15,827,712 that 

overlaps a portion of the AML-associated MYH11 gene (16: 15,703,134 - 15,857,032) 

(Figure 49a-b). 

Case 21 

In case 21, two aberrations overlapping with pathogenic genes were detected with 

normal karyotype and FISH analyses.  A 4,995kbp mosaic gain on chromosome 1p36.33 

including the PRDM16 gene and a 50kbp gain on chromosome 11p11.2 involving the 

EXT2 tumor suppressor gene, were detected by microarray studies (Figure 50a-b).   
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Figure 49.  Microarray results for Case 20.  Two aberrations were detected.  a) 
A 229kbp loss was observed on chromosome 6p21.2 which partially overlaps a 
portion of the tumor suppressor RUNX2 gene.  b) A 26kbp gain was detected on 
chromosome 16p13.11 that overlaps a portion of the MYH11 gene, a gene 
associated with AML. 
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Figure 50.  Microarray results for Case 21.  Image depicts two aberrations that 
overlap with pathogenic genes were detected.  a) A 4,995kbp mosaic gain on 
chromosome 1p36.33 overlapping the MDS-associated PRDM16 gene. b) A 50kbp 
gain on chromosome 11p11.2 was observed that overlaps a portion of the tumor 
suppressor EXT2 gene. 
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Case 22 

Case 22 was a bone marrow aspirate from a 24-year-old female with a normal 

karyotype with suboptimal morphology and was negative for the MDS FISH panel.  Four 

aberrations overlapping pathogenic genes were detected.  A 1.6Mbp gain on chromosome 

1p36.33 overlapping the PRDM16 gene, a known MDS-related gene; a 592kbp loss on 

chromosome 6q25.1 covering LATS1, a large tumor suppressor gene; a 454kbp loss 

involving IDO1 gene with antiproliferative effects; and a large LOH region involving four 

additional genes were detected on chromosome 15.  The genes include: PML (15: 

73,994,672 - 74,047,818), involved in acute promyelocytic leukemia (APL); RPS17 (15: 

82,536,749 - 82,540,543), involved in Diamond-Blackfan anemia; RECQL3 (15: 

90,717,326 - 90,815,461), a known Bloom syndrome gene; and FANCI (15: 89,243,947 - 

89,317,130), known to be involved with Fanconi’s anemia (Figure 51a-d).   

Case 23 

Case 23 was a bone marrow aspirate from a 20-year-old male with a normal 

karyotype, FISH, and microarray results.    

Case 24 

Case 24 was a bone marrow aspirate from a 15-year-old male that presented a 

normal karyotype.  FISH studies using probes for MDS revealed a deletion of 20(q12q13) 

in 8% of interphase cells (Figure 52).  Many benign alterations were noted in microarray 

studies.  The deletion of 20 observed by FISH was not detected by microarray due to low 

level mosaicism.  
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Figure 51a-b.  Microarray results for Case 22. Four aberrations that 
overlap pathogenic genes were detected.  a) A 1613kbp gain was detected 
on chromosome 1p36.33 which overlaps the PRDM16 gene, a known MDS-
related gene.  b) A 592kbp loss was detected on chromosome 6q25.1 which 
overlaps the LATS1 gene, a large tumor suppressor.   
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Figure 51c-d.  Microarray results for Case 22. c)   A 454kbp loss on 
chromosome 8p11.21 located which overlaps the IDO1 gene, which has 
been shown to have antiproliferative effects on tumor.  d) The image 
illustrates an LOH region on chromosome 15q24.-q26.1 which overlaps four 
genes: PML, involved in acute promyelocytic leukemia; RPS17, involved in 
Diamond-Blackfan anemia; RECQL3, a known Bloom syndrome gene; and 
FANCI, known to be involved with Fanconi’s anemia. 
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Figure 52.  FISH results for Case 24.  The FISH MDS panel detected a 
deletion of 20q12 and 20q13 with normal cytogenetic karyotypes.  This 
image shows only one copy of each of the 20q probes. 
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Case 25 

Case 25 was a bone marrow aspirate from a 7-year-old female with a normal 

karyotype and negative MDS FISH studies.  A 682kbp pathogenic loss was detected on 

chromosome 7q21.3 located at chr7: 97,143,614 - 97,826,349.  This deletion overlaps the 

TAC1 gene (7: 97,731,958 - 97,740,471), a known regulator of hematopoiesis (Figure 53).    

Case 26 

In case 26, forty-two of the 45 aberrations detected by microarray were classified 

as benign.  Three aberrations were determined to overlap with pathogenic genes.  A 

400kbp loss was detected on chromosome 8p11.21 located at chr8: 41,715,952 - 

42,116,292 which overlaps the KAT6A gene (8: 41,929,478 - 42,051,988), a known AML-

related gene.  A 471kbp loss on chromosome 11q14.2 was detected at location chr11: 

85,499,875 - 85,971,236, overlapping the AML-related gene PICALM (11: 85,957,170 - 

86,069,880).  Additionally, a 396kbp loss on chromosome 11q24.3 was detected at 

location chr11: 128,258,843 - 128,655,819 that overlaps with the AML-related gene ETS1 

(11: 128,458,760 - 128,587,583).  (Figure 54a-c).   

Case 27 

Case 27 was a bone marrow aspirate from a 4-year-old male with a normal 

karyotype and normal FISH results (Figure 55).  DNA from the excess whole bone marrow 

was extracted, however, due to a poor quality of DNA (less than 5µg/mL) it could not be 

used for microarray studies.   
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Figure 54.  Microarray results for Case 26.  Three 
aberrations detected were determined to involve AML-
associated genes.  These include a) a 400kbp loss 
was detected on chromosome 8p11.21 which overlaps 
the KAT6A gene; b) a 471kbp loss on chromosome 
11q14.2 was detected which overlaps the PICALM 
gene; and c) a 396kbp loss on chromosome 11q24.3 
was detected which overlaps the ETS1 gene. 
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Case 28 

Case 28 was a bone marrow aspirate from a 2-year-old male that presented a 

normal karyotype, FISH and microarray results (Figure 56).   

The utilization of high-resolution techniques allowed for the detection of novel 

genetic changes in this rare group of MDS.  The 33 genes found to have a genomic 

aberration have a variety of functions not typically reported in pediatric MDS.  Those of 

particular importance include the eight genes observed in multiple cases which may have 

implications in MDS based upon the findings of this study.  The gain of the entire MDS-

related PRDM16 gene was detected in six cases along with a variety of other genomic 

aberrations equally of interest due to the novelty of these findings in the pediatric MDS 

population (Table VIII).  The results from this study provides information useful in the 

characterization of the genetic landscape of this rare population of MDS.   
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CASE CYTOGENETIC AND 
FISH RESULTS 

ADDITIONAL GENETIC 
ALTERATIONS AMONG CASES 

WITH GAIN OF PRDM16 

4 46,XY 
Negative FISH 

Loss of PIM1 (6p21.2) 

7 46,XX,inv(11)(q13q23)[17] 
MLL(11q23) 

Breakapart[67%] 

Gain of EXT2 (11p11.2) 
Loss of CHEK2 (22q12.1) 

10 46,XY 
Negative FISH 

LOH of MPL (1p34.2) 
LOH of ABL2 (1q25.2) 
Loss of ALK (2p23.3) 
Loss of IRF4 (6p25.3) 
Loss of CLU (8p21.1) 

Loss CDKN2B (9p21.3) 
Loss of FANCG (9p13.3) 
LOH of PAX5 (9p13.2) 

Gain of ADAMTS13 (9q34.2) 
Gain of MYH11 (16p13.11) 
Gain of ERCC4 (16p13.12) 

16 46,XX 
Negative FISH 

Partial Loss of IRF4 (6p25.3) 

21 46,XY 
Negative FISH 

Partial Gain of EXT2 (11p11.2) 

22 46,XX 
Negative FISH 

Loss of LATS1 (6q25.1) 
Loss of IDO1 (8p11.21) 
LOH of PML (15q24.1) 

LOH of RPS17 (15q25.2) 
LOH of RECQL3 (15q26.1) 
LOH of FANCI (15q26.1) 

 

Table VIII.  Characterization of the cases with the PRDM16 gene 
aberration.  This table lists the six cases with the PRDM16 gain and their 
respective cytogenetic and FISH results and additional genetic alterations observed 
by microarray analysis.   
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Comprehensive Testing Results 

From the retrospective study, 10.5% of abnormal samples were detected by FISH 

studies alone while 2.6% of abnormals were detected by cytogenetic karyotyping alone.  

This study presents that a total of 13.1% of abnormal samples were detected because of 

concurrent use of cytogenetics and FISH (Table IX).   

The addition of microarray as an adjunct study improved the abnormality detection 

rate for a number of cases.  Table X depicts comprehensive results after using all three 

techniques.  Eleven cases had normal cytogenetics and FISH while microarray detected 

an abnormality.  Twenty-four cases had all three tests performed, seven of these cases 

were normal (29%; 7 / 24) and 17 cases were abnormal (71%; 17 / 24).  Of these 17 cases, 

there were 11 cases with pathogenic findings by microarray with normal conventional 

cytogenetics and FISH studies.   

It is noteworthy that even though an abnormal finding was detected by microarray, 

in four cases microarray did not identify low level mosaic aberrations as low level 

mosaicism is detected by microarray above 20-25%.  A loss of chromosome 7, deletion of 

20, and also a balanced inversion disrupting the MLL gene had gone undetected by the 

microarray technique (Figures 38, 40, and 43; Table VII) .  From this study, 60.7% (17 / 

28) of cases detected an abnormality from at least one technique.   
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Table X.  Characterization of results from comprehensive testing.  
This table describes abnormalities for each of the 28 cases analyzed using 
cytogenetic karyotyping, FISH, and microarray techniques.  From this study, 
60.7% (17 / 28) of cases detected an abnormality from at least one technique.   
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Demographics 

MDS has been attributed to age due to the aging of the hematopoietic system from 

gradual accumulation of endogenous and exogenous carcinogens over a lifetime.  Studies 

have shown changes in the HSC system with over time including a higher frequency of 

stem cells, which are typically predominately quiescent, and a shift from a balanced 

differentiation to a more myeloid lineage than lymphoid.  With age, the hematopoietic 

system has an up-regulation of the cell cycle that produces decreased bone marrow 

cellularity that leads to abnormalities of anemia and MDS or MPD (Pang, Price et al. 2011).   

The occurrence of MDS before the age of 50 is rare; MDS is the most common 

cancer in persons over the age of 70 with incidences as high as 50 adult or elderly patients 

per 100,000 annually (Cui, Bueso-Ramos et al. 2010, Tefferi, Vardiman 2009, Corey, 

Minden et al. 2007).  An overwhelming majority of specimens analyzed in our laboratory 

from January 1, 1990 to December 31, 2015 were from the adult and elderly populations 

at 92.4% (3686 / 3992) as seen in Figure 24.  As depicted in Figure 23, this study supports 

the prevalence of MDS over the age of 70; over 53% of the MDS cases received into our 

laboratory were from individuals 70 years and older (1585 / 2948).  In the adult and elderly 

MDS populations, males are more frequently diagnosed than women (Visconte, Selleri et 

al. 2014).  Our study corroborates with the reported literature with findings of 57% males 

(1571 / 2771) to 43% females (1200 / 2771) from the 2771 total adult cases, age 30 and 

above.   

Myelodysplastic syndromes among the pediatric and young adult population, or 

those between the ages of 0 and 29, is quite rare and represents about 5% of the 

hematopoietic neoplastic disorders or about 1.8 to 4 cases per million per year for this age 

group (Rau, Shreedhara et al. 2012, Silva, Maschietto et al. 2013, Germing, Aul et al. 
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2008, Chatterjee, Choudhry 2013, Mandel, Dror et al. 2002).  In the past 25 years, we 

analyzed 306 pediatric or young adult MDS specimens, constituting 7.6% of the total MDS 

samples (306 / 3992), depicted in Figure 24.  This study is one of the largest cohorts of 

MDS and supports previous documentation that is has a low prevalence in the younger 

population.  The current report on pediatric MDS claim that this disease is seen in males 

and females equally (Niemeyer, Baumann 2008, Hofmann 2015a, Glaubach, Robinson et 

al. 2014).  Our study of 119 pediatric only individuals (0-18 years) does not corroborate 

with these reports as depicted in Figure 25 showing a frequency more comparable to the 

adult populations [65 (55%) males to 54 (45%) females].  The results showed a trend that 

males were more often diagnosed with MDS than females in the pediatric population.  

Current literature notes a median age between 6.8 and 10.7 years for pediatric MDS 

(Hofmann 2015a, Hofmann 2015b, Glaubach, Robinson et al. 2014).  Our study depicted 

a slightly lower median age of 6 years in the pediatric (0-18 years) population.  Our study 

of pediatric MDS cases showed that the majority were very young, in the first three years 

of life.  Thus, besides the ratio of males and females in the pediatric population, our 

present study correlates with previously published data on MDS.   

Cytogenetics and FISH 

Once ineffective hematopoiesis is observed, conventional cytogenetic karyotyping 

and FISH are essential tools in accurate diagnosis and provide important prognostic 

information from certain aberrations.  Nearly 40-50% of adult primary MDS studies contain 

a karyotypic abnormality and about 60-80% of secondary MDS samples contain an 

abnormality, detected by conventional techniques (Tefferi, Vardiman 2009, Haase, 

Germing et al. 2007, Jhanwar 2015, Haase 2008, Visconte, Selleri et al. 2014).  The 

heterogeneic nature of MDS includes the presence of different types of chromosomal 
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aberrations but the most common abnormalities in the adult MDS population include one 

or more of the following hallmark abnormalities of -5/del(5q), -7/del(7q), +8, and del(20q) 

(Jhanwar 2015, Haase, Germing et al. 2007, Haase 2008, Visconte, Selleri et al. 2014).  

In the adult population, these chromosome abnormalities have been well 

characterized; to some extent, prognosis and specific treatments have been determined 

based upon the presence of these anomalies.  The most common MDS-associated 

chromosome abnormality is the loss of chromosome 5 or more frequently a deletion of the 

long arm of chromosome 5, observed in about 30% of the adult MDS population with a 

cytogenetic abnormality (Haase, Germing et al. 2007).  As detailed in Table I, our studies 

support this observation in adult MDS samples.  Nearly 33% (519 / 1563) of the total 

abnormal adult MDS samples analyzed in this laboratory presented -5/del(5q).  Monosomy 

7 or deletion of the long arm of 7 is the next most frequent cytogenetic abnormality 

observed in adult MDS at about 15-25% (Jhanwar 2015, Haase 2008).   Our results 

detected -7/del(7q) at a slightly higher frequency of 27% (423 / 1563) among all abnormal 

adult samples.  Over the given time span, 18% of the abnormal adult MDS specimens 

analyzed in our laboratory contained trisomy 8 (282 / 1563) which also corresponds with 

the current statistics of +8 typically seen in roughly 16% of adult MDS (Haase, Germing et 

al. 2007).  Deleted 20q was observed in 16% (260 / 1563) of our subset of abnormal adult 

MDS samples.  Several studies have reported the deletion of the long arm of chromosome 

20 in 10-20% of cytogenetically abnormal MDS studies (Jhanwar 2015).   

Another cytogenetic abnormality typically observed in MDS patients is the loss of 

the Y chromosome, but this abnormality has been associated with advanced age and not 

necessarily indicative of the syndrome (Vardiman, Thiele et al. 2009, Tefferi, Vardiman 

2009).  In our adult and elderly population of MDS, loss of Y was the most frequent 
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cytogenetic non MDS-related abnormality observed at 12% (190 / 1563).  A variety of 

other abnormalities not related to MDS were observed in the adult population, however, 

all in frequencies less than 2%.   

A limited number of reports are available on the characterization of pediatric and 

young adult MDS but we do know that karyotypic abnormalities are typically observed in 

30 to 50% of the pediatric MDS population (Glaubach, Robinson et al. 2014).  Our study 

showed a slightly lower frequency of cytogenetic aberrations in this young population at 

24.8% (76 / 306).  Of the abnormal specimens, 73.7% (56 / 76) contained one of the four 

hallmark MDS-related abnormalities (Table II).  Current studies have documented the 

presence of these specific anomalies in pediatric MDS but research has shown that these 

entities are observed in different frequencies.  Unlike the adult MDS population, -5/del(5q) 

is rarely observed in pediatric MDS (Hofmann 2015a, Germing, Aul et al. 2008).  Our study 

found -5/del(5q) in 10.5% (8 / 76) of our abnormal pediatric population.  This was our least 

frequent cytogenetic abnormality among the four hallmark aberrations.  The most frequent 

cytogenetic abnormality in our pediatric specimens was -7/del(7q) in 36.8% (28 / 76).  

Current literature also shows that this abnormality is the most prevalent in the pediatric 

population at rates of 30% of abnormal cytogenetic studies and is observed in the adult 

population only 15-25% of the time (Corey, Minden et al. 2007, Glaubach, Robinson et al. 

2014, Niemeyer, Baumann 2011, Hofmann 2015a, Hofmann 2015b).  The next most 

frequent abnormality observed in the pediatric population is documented as trisomy 8, 

between 12-16% and in our study we witnessed +8 in 17.1% (13 / 76) (Glaubach, 

Robinson et al. 2014, Hofmann 2015a).  This intermediate frequency is comparable to that 

observed in the adult population.  Finally, the del(20q) abnormality has an intermediate 

frequency about 10-20% in both the pediatric and adult populations (Hofmann 2015a, 

Glaubach, Robinson et al. 2014).  Our study coincides with this information with the 
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observation of del(20q) in 13.2% (10 / 76) of the abnormal pediatric samples.  The most 

frequent other abnormality detected in the pediatric and young adult population is 

constitutional trisomy 21 in 25% (19 / 76).  Trisomy 21 accounts for 20-25% of pediatric 

MDS and has been characterized as its own entity of ML-DS (Rau, Shreedhara et al. 2012, 

Glaubach, Robinson et al. 2014).  The remaining pediatric and young adult samples with 

cytogenetic abnormalities not typical of MDS were observed in frequencies less than 1%.   

This study is one of the largest retrospective studies of MDS with 3992 total MDS 

specimens studied over the time frame of January 1, 1990 to December 31, 2015.  The 

goal of this study was to provide more evidence of the prevalence in the adult population 

and to confirm just how rare a disease MDS is in the pediatric population.  Our study 

confirms the very infrequent occurrence of MDS in the pediatric and young adult 

population.  This study provides confirmation of published statistics on the demographics 

and cytogenetic frequencies in adult MDS.  This study also provides more evidence 

towards the frequencies of cytogenetic findings in the pediatric and young adult population 

and provides evidence that the most common cytogenetic abnormality of -7/del(7q) is seen 

in a slightly higher frequency than previously published.     

Our study supports concurrent cytogenetic and FISH analyses to efficiently and 

accurately detect prognostically important abnormalities in MDS.  Benefits of concurrent 

cytogenetic and FISH testing aid in the detection of cytogenetic aberrations even when 

mitotic index is low from compromised or limited initial specimen and when poor 

morphology inhibits the ability to observe higher resolution banding (Cin, Aster et al. 2010, 

Rigolin, Bigoni et al. 2001).  Utilizing cytogenetic karyotyping will continue to detect 

abnormalities in very low frequencies that may be out of the abnormal range established 

for each FISH probe as determined during probe validation.  Furthermore, this study 
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observed 10.5% (8 / 76) of the total abnormal pediatric/young adult samples containing 

one of the hallmark MDS abnormalities only detectable by FISH studies (Table IX).  An 

accurate determination of all genetic aberrations is of the utmost importance for this rare 

group of MDS and is achieved with concurrent testing.       

Prognostic Implications in MDS 

For MDS studies, the use of cytogenetic studies is of utmost importance in 

prognostic implications based upon the presence of the hallmark aberrations of -5/del(5q), 

-7/del(7q), +8, and del(20q).  In the adult population, the prognostic scores are determined 

and well characterized based upon the presence of these anomalies.  Limited information 

and studies on the pediatric MDS population has precluded the development of a pediatric 

specific prognostic scoring system, however, continued efforts will contribute to this cause.  

The information available has shown prognostically diverse cytogenetic findings between 

the two age groups.   

The loss of chromosome 5 or deleted 5q is the most prevalent aberration in the 

adult population and is rarely observed in the pediatric population.  Adults with -5/del(5q) 

are considered in the ‘good’ prognostic category with an overall median survival at 54 

months and specific drug therapies have long been established including the use of 

azacitidine for MDS with 5q deletions (Tefferi, Vardiman 2009, Zou, Fink et al. 2007)  This 

abnormality in the pediatric population presents poor overall survival and a higher 

propensity of progression to AML (Haase 2008).  

A more favorable prognosis, median overall survival over 2 years, in the pediatric 

population is given when -7/del(7q) is observed cytogenetically due to being the ideal 

candidate for HSCT.  After treatment, these pediatric patients have an overall good 
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prognosis with a longer-term survival.  In the adult population, the median survival of an 

adult MDS study with this abnormality is less than 2 years (Rau, Shreedhara et al. 2012).  

These adult individuals are typically prone to infections and the -7/del(7q) aberration is 

usually part of a more complex karyotype (Greenberg, Tuechler et al. 2012). 

 Trisomy 8 in the pediatric population presents the most stable prognosis of the 

disease in the younger population while in the adult population; this abnormality correlates 

with an intermediate prognosis of OS at or above 23 months.  In both populations, the 

prognostic impact of del(20q) also has an intermediate OS at or above 23 months 

(Greenberg 2015, Rau, Shreedhara et al. 2012).  The -5/del(5q) and -7/del(7q) prognostic 

differences need to be the basis for the justification of characterizing the younger 

population as its own group.  Discovering any trends in gene involvement of the pediatric 

population and making comparisons with the adult studies will aid in determining key 

differences between pediatric and adult MDS cases at the molecular level.   

Microarray 

The use of high-resolution techniques including microarray is useful in the 

identification of any additional microdeletions or duplications that are unable to be 

observed by standard cytogenetic assays.  In the adult population, this technique has been 

able to shed light on possible mutations that affect genes that regulate cellular epigenetic 

machinery (Shih, Abdel-Wahab et al. 2012, Bejar 2014).  The specific genes involved in 

pediatric MDS have yet to be fully characterized and this study contributes to the ongoing 

research of this rare population.   

Our study shows the importance of comprehensive analyses for MDS.  Roughly 

45% of MDS studies will present normal cytogenetic karyotypes yet a genetic imbalance 

cannot be ruled out (Cherian, Bagg 2006, Haase, Germing et al. 2007).  The purpose of 
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this study was to determine genetic anomalies in the rare pediatric MDS population with 

a comprehensive study that included cytogenetics, FISH, and high-resolution array 

technologies.  As described in Table XI, our findings characterized genetic aberrations in 

33 genes from over 58% (15 / 26 cases) of the pediatric and young adult samples tested.  

The majority of these cases (11 cases) presented normal cytogenetic and FISH results at 

73% as depicted in Figure 57.  The ability to detect genomic loss or gain in prognostically 

relevant genes in pediatric MDS cases has clinical implications for the patient and higher 

resolution testing like microarray can achieve this detection.   

This study also shows the need to continue conventional techniques of 

cytogenetics and FISH.    Microarray analysis is typically able to detect copy number 

changes when present in as few as 20-25% of cells.  Unfortunately, due to the mosaic 

nature of cancer genomes, aberrations can occur in low numbers that are not able to be 

detected by these higher resolution tests due to the algorithm nature of the analysis.  The 

need for comprehensive testing is necessary in order to determine all possible genomic 

aberrations for the benefit of a more thorough analysis of each case. 

Current Trends in Adult MDS Array Analysis 

The heterogeneous nature of MDS is seen at the genetic level in a broad spectrum 

of somatic or acquired gene alterations.  Genetic imbalances are detected using high-

resolution techniques that are increasingly becoming recognized as important diagnostic 

and prognostic markers that not only have clinical significance in relation to risk 

stratification and potential therapies but have primarily been studied and implicated in the 

adult population (Vardiman, Thiele et al. 2009, Kulasekararaj, Mohamedali et al. 2013, 

Jhanwar 2015).   
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difications, transcription regulation, tumor suppression, and signal transduction in the  

  

Case Cytogenetic 
Results 

FISH Results Microarray Results Reference 

1 46,XX Negative Loss of CBFA2T3 Fig. 34 
4 46,XY Negative Gain of PRDM16 

Loss of PIM1 
Fig. 35 

5 46,XY del(20)(q12q13) 
[13%] 

Loss of ALK Figs. 37-38 

7 46,XX,inv(11) 
(q13q23) 

MLL (11q23)  
Breakapart [67%] 

Gain of PRDM16 
Gain of EXT2 

Loss of CHEK2 

Figs. 39-40 

10 46,XY Negative Gain of PRDM16 
LOH of MPL  
LOH of ABL2  
Loss of ALK  
Loss of IRF4  
Loss of CLU  

Loss CDKN2B  
Loss of FANCG  
LOH of PAX5  

Gain of ADAMTS13  
Gain of MYH11  
Gain of ERCC4  

Table VI 

11 45,XY,-7 Monosomy 7 
[12%] 

Loss of CDKN2B 
LOH PAX5 

Gain of ADAMTS13 
Gain of ERCC4 
Gain of MYH11 
Gain of FANCA 
Gain of RARA 

Fig. 41 
Table VII 

12 45,XY,-7 Monosomy 7 
[23%] 

Gain of IRF4 
Loss of IKZF1 

Figs. 42-43 

15 46,XY Negative Loss of IRF4 
Loss of YAP1 

Loss of PTPN11 

Fig. 45 

16 46,XX Negative Gain of PRDM16 
Loss of IRF4 

Fig. 46 

19 46,XY Negative Loss of KIF4 Fig. 48 
20 46,XX Negative Loss of RUNX2 

Gain of MYH11  
Fig. 49 

21 46,XY Negative Gain of PRDM16 
Gain of EXT2 

Fig. 50 

22 46,XX Negative Gain of PRDM16 
Loss of LATS1  
Loss of IDO1 
LOH of PML  

LOH of RPS17  
LOH of RECQL3  
LOH of FANCI  

Fig. 51 

25 46,XX Negative Loss of TAC1 Fig. 53 
26 46,XY Negative Loss of KAT6A 

Loss of PICALM 
Loss of ETS1 

Fig. 54 

 
Table XI.  Details of abnormalities observed in pediatric MDS cases by 
microarray.  This table describes the cytogenetic and FISH findings and the specific 
aberrations detected by microarray fort he 26 cases that microarray was performed on.  
This table also lists the reference figure or table describing each case. 
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Figure 57.  Cytogenetic or FISH results in cases with abnormal microarray 
analyses.  From the 15 total abnormal microarray cases, 73% presented normal 
cytogenetic and FISH results while only 27% had an abnormal cytogenetic or FISH 
analysis.   
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Current contributions of microarray have identified over 40 key MDS-related 

mutations.  The most frequent mutations occur in genes responsible for DNA methylation, 

histone modifications, transcription regulation, tumor suppression, and signal transduction 

in the form of gains or losses (Table XII) (Kulasekararaj, Mohamedali et al. 2013, 

Glaubach, Robinson et al. 2014, Bejar 2014, Shih, Abdel-Wahab et al. 2012, 

Papaemmanuil, Gerstung et al. 2013).    

One possible mechanism for the development of MDS and other hematopoietic 

malignancies later in life includes the dysregulation of epigenetic genes specifically those 

involved in DNA methylation, which concurrently occurs more frequently as a person ages 

(Jhanwar 2015, Zhang, Padron et al. 2015).  The most frequent mutated genes 

responsible for DNA methylation include TET2 and DNMT3A in the adult MDS population 

(Santini, Melnick et al. 2013, Zhang, Padron et al. 2015, Greenberg 2015, Kulasekararaj, 

Mohamedali et al. 2013, Glaubach, Robinson et al. 2014).  Current literature suggests that 

mutations in the form of copy number loss of the TET2 gene are the most frequent 

aberration detected in MDS samples (Santini, Melnick et al. 2013, Zhang, Padron et al. 

2015).  Furthermore, MDS patients with TET2 and loss of DNMT3A genetic abnormalities 

have been shown to respond positively to hypomethylating agents including azacitidine 

for treatment due to their correcting effects on epigenetic abnormalities (Hofmann 2015a, 

Glaubach, Robinson et al. 2014, Kulasekararaj, Mohamedali et al. 2013, Visconte, Selleri 

et al. 2014).  According to current literature, administering these specific treatments to the 

pediatric population is not the ideal therapy as these mutations are rare in children and 

young adults.     

Epigenetic histone and chromatin modifications including methylation is essential 

in the differentiation of stem cells to specific cell types while still maintaining a constant  
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Table XII.  List of the most frequent gene alterations in adult MDS.  
According to current literature these genes are responsible for DNA methylation, 
histone modifications, transcription regulation, tumor suppression, and signal 
transduction in adult MDS. 
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stem cell population.  In the adult population, certain MDS-related chromosomal 

abnormalities have been linked to specific methylating activities of the EZH2 gene 

including deleted 7q, a frequent cytogenetic aberration in adult MDS.  The loss of this gene 

has been shown to increase myeloid progenitor formation during hematopoiesis (Padron 

et al. 2015, Kulasekararaj, Mohamedali et al. 2013).  Frequent mutations of ASXL1, a 

regulator of histone function, are observed in the adult MDS population in high frequency 

as a copy number loss and has been shown to result in excess blasts and independently 

results in a poor prognosis for those adults with the mutation (Visconte, Selleri et al. 2014, 

Greenberg 2015).  

The most common genetic alterations affecting transcription regulation in the older 

MDS population include RUNX1, GATA2, and ETV6.  Point mutations in RUNX1, also 

known as AML1, are typically associated with a high-risk MDS with a higher propensity of 

AML evolution (Santini, Melnick et al. 2013, Visconte, Selleri et al. 2014).  The AML1 gene 

acts as a regulator of myeloid differentiation and leads to a poor prognosis when mutated.  

Even though, loss of the GATA2 gene has been suggested to be an early indicator of MDS 

initiation; it has rarely been observed in younger MDS cases (Glaubach, Robinson et al. 

2014).  This gene is responsible for hematopoietic cell proliferation and survival (Zhang, 

Padron et al. 2015).  Gene aberrations of ETV6 have adverse prognostic implications in 

MDS as this gene is frequently rearranged with a variety of other genes in a range of 

human cancers including MDS (Bejar 2014, Bejar, Stevenson et al. 2011).   

Genetic alterations of TP53 is commonly observed with complex karyotypes in the 

form of deletions or loss of the gene.  In the adult population, loss of TP53, a critical tumor 

suppressor gene on chromosome 17p13, is associated with the isolated deleted 5q 
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syndrome (Greenberg 2015); this aberration is rarely observed in young populations.  

Mutations of this gene results in malfunctions of cell cycle regulation and DNA repair and 

has been observed in numerous human cancers (Zhang, Padron et al. 2015, Bejar 2014).  

A poor prognosis and a possible resistance to specific treatments and relapse has been 

observed in adult MDS cases with disruption of the TP53 gene (Greenberg 2015).   

A common gain that affects signal transduction in adult MDS cases has been 

documented within chromosome 9p24 resulting in a copy number gain of the JAK2 gene 

and results in a better OS and lowered progression to AML (Zhang, Padron et al. 2015, 

Vardiman, Thiele et al. 2009).  Even though rare in the pediatric population, this alteration 

is one of the most recognized in myeloproliferative neoplasms (MPN) including 

polycythemia vera (PV) and primary myelofibrosis (PMF) and has typically been observed 

in conjunction with trisomy 8 from karyotyping and FISH analyses (Liu, Ying et al. 2012, 

Kulasekararaj, Mohamedali et al. 2013).  Since trisomy 8 is less frequently observed in 

the pediatric population, the presence of concurrent gain within 9p24 is assumed to rarely 

occur.  A FISH probe is not included in our panel and we did not observe the gain of this 

region in our microarray analysis of pediatric MDS cases.        

Current Trends in Pediatric MDS Array Analysis 

To date, over 40 genes have been described in the adult population and alterations 

of TET2, DNMT3A, IDH1/2, EZH2, ASXL1, RUNX1, GATA2, ETV6, TP53, and JAK2 are 

some of the most frequent aberrations; however, these are rare or even non-existent in 

current pediatric data.  Alterations in genes with DNA methylation and histone/chromatin 

functions have yet to be determined in the pediatric and young adult MDS population   

(Glaubach, Robinson et al. 2014).    Limited use of array on the rare population of pediatric 

MDS has presented very few overlapping adult and pediatric gene involvements but 
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mutations of JAK2, GATA2 and RUNX1 have been seen in very low frequencies (Hofmann 

2015b, Hofmann 2015a, Ismael, Shimada et al. 2012).  In about 7% of primary childhood 

MDS, mutations of the GATA2 gene have been observed leading to the assumption that 

this gene is a first hit in pediatric MDS (Kozyra, Hirabayashi et al. 2015).  Currently, an 

increasing number of studies have been conducted on the mutations associated with 

juvenile myelomonocytic leukemia (JMML) and not pediatric MDS as a whole.  The gene 

associations most frequently observed include those involved in RAS/MAPK signaling, 

which controls cell proliferation and apoptosis, including NF1, PTPN11, CBL, NRAS, 

JAK2, and KRAS (Ganapathi, Schafernak et al. 2015, Silva, Maschietto et al. 2013, 

Glaubach, Robinson et al. 2014, Ismael, Shimada et al. 2012).  The use of high-resolution 

microarray is suggested to play an integral part in accurately detecting genomic alterations 

in JMML and delivering a more accurate diagnosis and prognosis for these young patients.  

More information and insight into the molecular basis of pediatric MDS is needed.  Using 

larger pediatric and young adult MDS cohorts will aid in distinguishing novel genomic 

aberrations useful for a better understanding of MDS in this rare group.   

Limitations of this Study 

Pediatric MDS is rare and the number of cases received in a single laboratory are 

scarce.   To add to this, usually a small amount of whole bone marrow or cancer blood 

specimen is obtained from pediatric samples.  Due to the nature of the disease in these 

young patients, the original specimen sent for cytogenetic and FISH analyses was typically 

at or below the recommended amount.  Excess specimen for these patients is most often 

very limited and the elimination of a test or culture for the use of research is unethical.  In 

our laboratory, clinical information on the patients may be limited to demographic 

information with limited follow up information available.   The majority of pediatric MDS 
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specimens had limited to no follow up studies and further clinical information was 

unavailable.   

Gene Involvement in Pediatric MDS 

In the current study, 33 genes that had a gain/loss/LOH in known pathogenic 

genes was observed (Table V).  These genes have not been previously documented in 

pediatric-specific MDS cases.  Disease specific genes, tumor suppressors, oncogenes 

and cell cycle regulators were observed and were typically aberrant in only one case with 

the exception of eight genes.  The genes that were detected to have a copy number 

change in more than one case included: PRDM16, IRF4, MYH11, ALK, CDKN2B, PAX5, 

EXT2, and ERCC4 (Table XIII).     The most notable finding from this study is a copy 

number gain encompassing the entire PRDM16 gene in six cases (21.4%; 6  /  28 cases).  

The genomic studies on pediatric MDS are very rare and there is a dearth of available 

data; therefore, the resulting effect of these genetic alterations is based upon known 

functions of these genes.      

PRDM16 Gene   

The PRDM16 gene, located on chromosome 1p36.33, belongs to the PRDM family 

that is involved in a wide range of biological processes including adipose development, 

cell fate determination, and specific diseases including cardiomyopathy, AML and more 

importantly MDS (Masetti, Togni et al. 2014, Duhoux, Ameye et al. 2012, Shiba, Yoshida 

et al. 2015, Chi, Cohen 2016, Warner, Greene et al. 2014).  Leukemogenesis in humans 

has been attributed to the dysregulation of hematopoietic stem cell maintenance resulting  
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from disrupted PRDM16.  Research has shown the involvement of PRDM16 in AML and 

MDS with the t(1;3)(p36;q21) rearrangement (MECOM) among older patients and those 

presenting an overexpression of MECOM had a poor prognosis and less success to 

current therapies (Duhoux, Ameye et al. 2012).  This suggests that the promotor region of 

PRMD16 is important in functionality of the gene.  Further studies revealed that 

rearrangements were not limited to MECOM and novel translocation partners including 

ETV6 and IKZF1 were described (Chi, Cohen 2016).  These studies have led to the 

assumption that a differential expression of this gene is involved during dysregulation of 

hematopoiesis (Duhoux, Ameye et al. 2012).  Functional studies for the PRDM16 gene 

have been challenging due to the fact that multiple isoforms exist that have been 

characterized as both an oncogene (PR-lacking domain) and a tumor suppressor (PR-

containing domain) (Chi, Cohen 2016, Warner, Greene et al. 2014).   

The current data on PRDM16 and MDS is not exclusive to the pediatric population 

and has typically been studied using the adult population.  In one pediatric AML study, a 

novel PRDM16 fusion transcript was detected using sequencing techniques and the 

investigators were able to determine that this occurrence was not only a rare finding but 

was observed as an overexpression of the gene (Masetti, Togni et al. 2014).  Our findings 

in this pediatric and young adult cohort indicated a gain of the entire gene in six cases, 

which is assumed to lead to the overexpression of the PR-lacking domain and therefore 

having an oncogenic effect.  In all cases with PRDM16 alterations, conventional 

cytogenetics was normal.  Each case presented aberrations exclusive to the case 

including gains, losses, and/or LOH in PIM1, EXT2, CHEK2, MPL, ABL2, ALK, IRF4, CLU, 

CDKN2B, FANCG, PAX5, ADAMTS13, ERCC4, MYH11, LATS1, IDO1, FANCI, PML, 

RPS17, and RECQL3 (Table VIII).  Two cases had a common loss of the IRF4 (6p25.3) 

gene with gain of PRDM16 and both cases presented normal cytogenetic karyotypes and 
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FISH findings (Table VI and 46).  A different set of cases had a common gain of EXT2 

(11p11.2) with gain of PRDM16 and only one of the cases presented normal conventional 

cytogenetic findings (Figures 40 and 50); the other case contained an abnormal 

inv(11)(q13q23) by cytogenetics and FISH (Figure 39).  One case with the PRDM16 gain 

also contained a loss of the PIM1 gene on 6p21.2 and presented normal cytogenetic and 

FISH results (Figure 35).  Finally, one case contained PRDM16 aberration with multiple 

other aberrations within 6q, 8p, and 15q by microarray with normal cytogenetic and FISH 

results (Figure 51).  The individual and combined roles of these various genes in cases 

with PRDM16 is yet to be determined.  Also, the determination of whether or not these 

genes are novel translocation partners within the pediatric MDS population needs to be 

established and can be accomplished with continued microarray analysis with a larger 

sample size of young MDS patients.  The overall number of pediatric MDS cases is 

typically low and when cases are received, adequate amount of leftover specimen must 

be made available for DNA extraction to use in higher resolution testing.  The novel 

findings in the PRDM16 gene from this study has potential for being deemed a key player 

in the genetic landscape of the pediatric and young adult MDS population.   

IRF4 Gene   

In four cases, an aberration of the IRF4 gene on 6p25.3 was detected ranging from 

179kbp to 268kbp gain.  One case contained numerous additional copy number changes 

with normal cytogenetic and FISH results.  One of the four cases contained a 197kbp gain 

of the gene along with the loss of the IKZF1 gene.  This case also presented abnormal 

cytogenetic and FISH results of monosomy 7 (Figures 42-43).   The other two cases had 

a partial loss of the gene and both presented normal cytogenetic and FISH results.  In 

addition to the IRF4 gene, one case detected the loss of the YAP1 and PTPN11 genes 
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(Figure 45) and the other case detected gain of PRDM16 (Figure 46).   The IRF4 gene is 

a known oncogene involved in T-cell lymphoma and multiple myeloma primarily and less 

often associated with MDS (Lohr, Stojanov et al. 2014, Kalb, Feldman 2015).  The IRF4 

gene has been shown to function as a transcription factor involved in normal blood 

development, which is needed for key developmental stages of hematopoiesis (Adamaki, 

Lambrou et al. 2013).  One study presented that the amount of IRF4 gene expression in 

pediatric acute leukemia was twice the amount in comparison to healthy children 

(Adamaki, Lambrou et al. 2013).  While another study determined that IRF4 aberrations 

were more commonly observed in a subtype of B-cell lymphoma in the pediatric population 

and less commonly seen in adults (Salaverria, Philipp et al. 2011).  From our study, the 

genomic aberration detected in this gene among the four cases is typical of current 

research observing gains.  Even though studies have not been conducted in the MDS 

populations, our findings are significant for the ongoing research in determining the 

genomic landscape of this cohort.   

MYH11 Gene   

A protein-coding gene associated with AML was detected and was of particular 

interest to this study.  A gain of the MYH11 gene on 16p13.11 was detected in three 

pediatric MDS cases by microarray analysis.  Two of these cases had the exact same gain 

size and numerous additional aberrations were detected by microarray (Tables VI and 

VII).  These two particular cases were either cytogenetically normal or presented 

monosomy 7 (Figure 41).  One case with normal cytogenetic and FISH findings also 

detected a loss of the RUNX2 gene by microarray analysis (Figure 49).  MYH11 is typically 

observed in AML and presents abnormal bone marrow eosinophils and is part of one of 

the most frequent AML-related alterations with the CBFB inversion of chromosome 16 
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usually following drug therapy (Akiyama, Yamamoto et al. 2015, Haferlach 2015).  The 

MYH11 inversion is frequently observed by cytogenetic and FISH analyses in acute 

myelomonoblastic leukemia, but a few studies have documented the presence of cryptic 

aberrations of MYH11 that are only seen with higher resolution testing usually in RT-PCR 

(Douet‐Guilbert, Chauveau et al. 2015).  The evolvement of MDS to AML cannot be ruled 

out without further clinical data for these cases.  Although microarray has not been 

implicated in specific studies to detect MYH11 involvement, the higher resolution 

technique may have uncovered this aberration without CBFB in this cohort of patients for 

the first time.   

ALK Gene   

In two cases analyzed, a partial loss of the ALK gene was detected on 

chromosome 2p23.  ALK has predominately been characterized as a gene involved in a 

variety of tumors including anaplastic large cell lymphomas, follicular lymphoma, non-

small cell lung cancer, and neuroblastoma (Tanaka, Ohwada et al. 2012, Dai, Kelly et al. 

2012).  Currently, there are no studies indicating an ALK involvement in MDS and the 

information available typically presents a variety of ALK-negative lymphomas with MDS 

(Tanaka, Ohwada et al. 2012).  In the two cases this aberration was detected, a partial 

deletion was observed in each of the cases with losses of 39kbp and 98kbp.  The 98kbp 

partial loss case presented normal cytogenetic and FISH findings.  We detected numerous 

additional gains, losses, and regions of LOH.  The other case contained a 39kbp partial 

loss of ALK as the sole aberration from microarray studies.  This case presented normal 

cytogenetic results and abnormal FISH findings (deleted 20q in 13% of interphase cells) 

(Figures 37-38).  ALK-positive gene rearrangements are in fact present in pediatric 

diseases but primarily in neuroblastomas (Jongmans, Loeffen et al. 2016).  In 2010, one 
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study presented a very small population of pediatric MPD patients (6 patients) with ALK 

abnormalities only seen by cytogenetics in the form of inv(2), translocations between 2p 

and 2q or 4q, or a deletion of 2p. Three of these previously published case studies also 

contained the common monosomy 7 aberration (Röttgers, Gombert et al. 2010).  In our 

present study, the cytogenetic findings were normal.  The expression of ALK activates a 

variety of signaling pathways including hematopoietic cell proliferation and transformation 

(Röttgers, Gombert et al. 2010).   With the limited studies available on ALK aberrations 

and MDS, we speculate that the activity of ALK has a variety of activities not limited to 

lymphomas including roles in hematopoietic cell proliferation and transformation.   

CDKN2B, PAX5, and ERCC4 Gene 

In two cases, the same 47kbp loss on 9p21.3 and 32635kbp gain on 16p13.13 was 

observed.  The loss of CDKN2B and gain of the region overlapping the ERCC4 gene 

locations were the exact same in both of these cases.  Both cases contained other 

additional aberrations.  One case presented monosomy 7 by cytogenetics and FISH while 

normal findings were observed in the other case.  These aberrations encompassed the 

CDKN2B and ERCC4 genes, respectively.  Mutations of the CDKN2B gene, a tumor 

suppressor, has been linked to a variety of cancers including melanoma, renal cell 

carcinoma and breast cancer but have not typically been linked to MDS (McNeal, Liu et 

al. 2015, Jafri, Wake et al. 2015).  In a 2012 study, characterization of the methylation 

changes were characterized in chromosome 9p21, which includes the CDKN2B gene, and 

their alterations were considered to play a role in MDS and AML in these patients 

(Cechova, Lassuthova et al. 2012).  This study did not define the age groups of its subset 

of MDS and AML patients nor a genomic copy number change.  The loss of this tumor 
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suppressor in two cases from our study should not be disregarded due to the lack of 

published data and is of interest for further studies.    

The ERCC4 gene has been characterized as a key player in DNA damage repair 

and mutations are typically observed in HPV-positive cervical cancer, neurological 

abnormalities, and more note-worthy, in ERCC4-related Fanconi’s anemia (FA)  

(Manandhar, Boulware et al. 2015, Ghafouri-Fard, Fardaei et al. 2016, Dong, Nebert et al. 

2015).  The ERRC4 gene has enzymatic activity that encodes for important DNA repair 

enzymes and has been studied as a potential target for cancer treatments (Manandhar, 

Boulware et al. 2015).  More importantly, this DNA repair gene, when mutated, causes a 

subtype of FA characterized by bone marrow failure and a predisposition to cancer 

(Bogliolo, Schuster et al. 2013).  Whether this patient is in fact diagnosed with FA is not 

known at this time but the occurrence of this aberration can be used as a gene indicator 

for bone marrow disorders due to inherited disorders.   

A 4.0-6.6Mbp region of LOH on chromosome 9p13.2 was detected in two cases 

encompassing the PAX5 gene (Tables VI and VII).  Typically, alterations of the PAX5 have 

been observed in ALL cases (Anderl, König et al. 2015).  A more recent study recognized 

a number of genes that are considered to cause familial MDS and a predisposition to MDS 

and AML in adult populations including the PAX5 gene (Churpek 2014, Horwitz 2013).  

This finding with novel studies on PAX5 playing a role as a hereditary factor in MDS and 

leukemia risk is of importance in characterizing the genetic landscape of this young 

population.   

EXT2 Gene   
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An aberration of the tumor suppressor gene EXT2 was observed in the form of a 

gain on chromosome 11p11.12 in two cases with the same additional aberration of gain 

of PRDM16.  One case presented abnormal cytogenetic and FISH findings with an 

inversion of chromosome 11 and additional aberrations in CHEK2 by microarray analysis 

(Figures 39-40).  A 50kbp partial gain of EXT2 was detected in a case that contained gain 

of PRDM16 and normal cytogenetic and FISH results (Figure 50).  The EXT2 gene causes 

abnormal bone growths or exostoses and has been found to play a role in hereditary bone 

cancers (Wuyts, Van Hul et al. 1998).  This gene has typically been characterized as a 

tumor suppressor primarily involved in osteochondromas with genetic mutations of loss or 

nucleotide substitutions (Stickens, Clines et al. 1996, Xia, Xu et al. 2016).  This aberration 

has not been documented as a gain or with an involvement in MDS but it was detected in 

two cases with the same concurrent gains and should be one to note for future studies.  

Protein Coding Genes of MDS, MPN, and AML:  RUNX2, IKZF1, ETS1, 

PTPN11, PML, and CBFA2T3 Genes 

A 229kbp loss on chromosome 6p21.was detected in one patient that overlaps 

with the protein coding gene RUNX2.  This patient presented normal cytogenetic and FISH 

results and also had a gain of MYH11 observed by microarray analysis (Figure 49).  

RUNX2 is most often associated with bone and cartilage maintenance but in knockout 

studies, defects in this gene have caused disruption in the hematopoietic development 

(Harada, Harada et al. 2004, Blyth, Cameron et al. 2005).  Presently, the majority of 

studies focus on RUNX1 aberrations which are found in about 20% of AML patients (Kuo, 

Zaidi et al. 2009). However, a recent study reported the up-regulation of RUNX2 in AML 

with normal cytogenetics (Schnerch, Lausch et al. 2014).   On the contrary, we observed 

the loss of the RUNX2 gene but with limited information regarding RUNX2 overall, we do 
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not dismiss this finding due to the role the RUNX family transcription factors have been 

shown to play in hematopoiesis.   

A loss was detected within the protein-coding gene of IKZF1 that was 298kbp in 

size in one case that also contained a gain of the IRF4 gene by microarray (Figure 43).  

The IKZF1 gene is located on 7p12.2, has more frequently been associated with ALL, and 

presents a poor outcome in B-ALL in the pediatric population (Kuiper, Waanders et al. 

2010).  In 2010, a study characterized IKZF1 as one of the novel mutations found in MPNs 

in the general population so the occurrence of these mutations specifically in pediatric 

MPNs or even MDS has not been documented (Tefferi 2010).  Defects of this gene have 

been shown to cause a malfunction in normal hematopoiesis and is one of the key players 

in regulating hematopoietic stem cell functioning (Gorzkiewicz, Walczewska 2015).  The 

case with loss of the IKZF1 gene in our study presented monosomy 7 cytogenetically.  The 

defined role this gene plays in pediatric MDS specifically has yet to be established; 

however, the loss of chromosome 7 is more frequently observed in the young population 

and therefore a loss of the IKZF1 gene is a possible important candidate gene of pediatric 

MDS.   

A 396kbp loss on 11q24.3 was detected in the protein-coding gene ETS1 in one 

case with normal cytogenetic and FISH results and additional aberrations in KAT6A and 

PICALM by microarray (Figure 54).  This gene belongs to a family that is involved in stem 

cell development, apoptosis, and tumorigenesis (Dittmer 2003).  More importantly, this 

gene has been linked to apoptosis in low-risk MDS patients as an epigenetic regulator in 

methylation (Del Rey, O'Hagan et al. 2013).  This finding is one of particular interest since 

mutations of epigenetic regulators are typically more common in adult and elderly MDS 

and the case described in the report is from an 11-month old (Aul, Bowen et al. 1998).  
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More interestingly, ETS1 has been implicated in FA in a particular subset of the population; 

the downregulation of this gene was observed in the Indian population presenting FA 

(Shyamsunder, Ganesh et al. 2013).  Fanconi’s anemia is typically characterized by bone 

marrow failure and hematological abnormalities and could play a role in this patient’s 

diagnosis of MDS. 

A 288kbp loss on chromosome 12q24.13 overlapping the PTPN11 gene was 

detected in one case with additional genetic aberrations in IRF4 and YAP1 (Figure 45).  

PTPN11 is associated with JMML, AML, and more noteworthy, pediatric MDS (Kozyra, 

Hirabayashi et al. 2015, Olsson, Zettermark et al. 2016, Sarper, Gelen et al. 2015).  

PTPN11 helps regulate cell growth, differentiation, and transformation (Kozyra, 

Hirabayashi et al. 2015).  This aberration has been described in current literature using 

gene based technologies including next generation sequencing and is frequently observed 

in MDS and when present, has been associated with a poor outcome including a shorter 

overall survival (Alpermann, Haferlach et al. 2015, Bejar 2014).  This finding is significant 

for this study as this particular case presented normal cytogenetic and FISH results; this 

loss was only detected using higher resolution testing like microarray.  The ability to detect 

genomic loss in relevant genes like PTPN11 in pediatric MDS cases has prognostic 

implications for the patient and emphasizes the need for concurrent genetic testing. 

The PML gene is often associated with the cytogenetic acute promyelocytic 

leukemia (APL) translocation t(15;17) with the RARA gene, frequently observed by 

karyotyping and/or FISH analyses (Rose, Haferlach et al. 2015).  This aberration is rare 

in MDS patients and the one case that detected a region of LOH on 15q24.1, 

encompassing the PML gene, was negative for the PML/RARA translocation based upon 

cytogenetic karyotyping.  In fact, cytogenetic and FISH results were normal.  However, 
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numerous additional aberrations were detected in PRDM16, LATS1, IDO1, RPS17, 

RECQL3, and FANCI genes by microarray (Figure 51). The detection of this aberration 

provides important diagnostic and prognostic information for APL and in a few rare cases, 

an aberration has been detected as a cryptic anomaly not observed by conventional 

techniques but rearrangements with RARA is also observed (Gruver, Rogers et al. 2013).  

Genomic imbalances of the RARA gene were not observed in this case by microarray 

analyses.  One study of the PML gene used microarray techniques to characterize loss of 

the gene in a variety of lymphomas and carcinomas yet LOH was not detected (Gurrieri, 

Capodieci et al. 2004).  The LOH of PML in this case cannot be discredited due to the 

multitude of aberrations observed by microarray and should be researched further. 

A 532kbp gain of the CBFA2T3 gene was observed in one patient as the sole 

anomaly detected by microarray analysis (Figure 34).  This gene is located on 16q24.3 

and has typically been observed in young AML patients that present a poorer outcome 

and a higher risk of relapse (Schuback, Alonzo et al. 2014).  According to current literature, 

an inversion of chromosome 16 encodes for a CBFA2T3/GLIS2 (16p13.3) fusion protein 

and has been shown to lead to a more aggressive type of pediatric AML (Gruber, Gedman 

et al. 2012).  This inversion typically is cryptic and presents a normal karyotype and 

cytogenetic results on this particular case did not present aberrations of the 16 

chromosome and were in fact normal (Masetti, Pigazzi et al. 2013, Vogan 2013). These 

findings are of particular interest due to the age of the patient (2 years) with an initial 

clinical diagnosis of MDS.  Given the published reports and facts that alteration of 

CBFA2T3 was observed as a sole abnormality, it would be of interest to determine whether 

this genetic change confers aggressive disease with higher transformation potential from 

MDS to AML.  The potential of AML evolvement from MDS is of concern for this particular 

case due to these findings.     
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Inherited Bone Marrow Failure Disorder Genes: FANCG, RPS17, RECQL3, 

FANCI, and FANCA Genes 

 An 11.7Mbp loss on 9p13.3 was detected in one case that overlaps with the 

FANCG gene.  This case contained numerous additional aberrations by microarray and 

presented normal cytogenetic and FISH results.  The observance of the FANCG gene has 

been attributed to the onset of adult AML and is considered a founder mutation of 

Fanconi’s anemia in different populations (Park, Chung et al. 2013, Wainstein, Kerr et al. 

2013, Duan, Wang et al. 2013).  The presence of bone marrow disorders, including MDS, 

are common from IBMF disorders like FA (Zierhut, Tryon et al. 2014).    

A large region of LOH was observed in one case on chromosome 15q25.2-26.1, 

with numerous additional aberrations by microarray (Figure 51).  This LOH region 

encompassed three genes of particular interest for this study.  The RPS17, RECQL3, and 

FANCI gene were within this region and are especially notable due to their involvement in 

three different kinds of inherited bone marrow failure disorders and their associations with 

MDS evolvement.  RPS17 is a gene associated with Diamond-Blackfan anemia, a form of 

anemia that usually presents itself within the first year of life (Babushok, Bessler 2015).  

Diamond-Blackfan is one of the IBMF disorders that leads to abnormal blood cell formation 

and can lead to blood cancers and disorders, including MDS, later in life (Quarello, Garelli 

et al. 2012).  RECQL3 is a gene responsible for the rare genetic disorder of Bloom 

syndrome; typically presents patchy red skin and short statue; more importantly, patients 

with diagnosed Bloom syndrome have a higher risk of different cancers (Aktas, Koc et al. 

2000).  Bloom syndrome predisposes an individual to AML and MDS and usually presents 

monosomy 7 by karyotyping, a common aberration observed in the pediatric MDS 

population (Poppe, Van Limbergen et al. 2001).  Microarray findings in this case also 
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showed LOH of the FANCI gene, one of the 17 variants that are responsible for FA that 

causes defective DNA repair functions, which leads to an inherited form of bone marrow 

disorders (Chen, Zhang et al. 2014).  The three genes detected in this case are 

responsible for three types of IBMF disorders, which have been documented to cause a 

predisposition to MDS and/or AML in the pediatric population (Babushok, Perdigones et 

al. 2015, Babushok, Bessler 2015).  Cytogenetic and FISH analyses for this case were 

normal.   

Aberrations of the FANCA gene were observed in one of the MDS cases.   An 

1110kbp gain on 16q24.3 encompassing the FANCA gene was detected along with 

numerous additional aberrations and is considered a gene of interest for this cohort (Table 

VII).  FANCA gene variants are one of the numerous genes responsible for the activation 

of FA (Ishiai, Kitao et al. 2008).  Individuals with this genomic imbalance have an increased 

risk for MDS and AML from the malfunctioning repair genes responsible for this IBMF 

disorder (Solomon, Rajendran et al. 2015, Voso, Fabiani et al. 2015).  The occurrence of 

this aberration is a probable cause for MDS in this subset of patients.   

Oncogenes and Tumor Suppressors:  MPL, ABL2, KIF14, PIM1, LATS1, CLU, 

YAP1, and CHEK2 Genes 

A 3760kbp region of LOH on 1p34.2 that encompassed the MPL gene was 

detected utilizing the OncoScan® platform on one case.  This particular case contained 

numerous additional aberrations observed by microarray and presented normal 

cytogenetics and FISH results (Table VI).  MPL, a proto-oncogene, has been associated 

with myelofibrosis and thrombocytopenia and one study has found a mutation of the MPL 

gene in pediatric essential thrombocythemia (ET), a very rare disease among the younger 

population (Ouyang, Qiao et al. 2015).  Essential thrombocythemia, when present in the 
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pediatric population, is seen as a sporadic event or as a familial inheritance and leads to 

a predisposition of MDS (Teofili, Giona et al. 2007).   In this same patient, a 4006kbp LOH 

was also observed at chromosome 1q25.2 which potentially disrupts the ALL-related gene 

ABL2 (Figure 42).  To date, the majority of pediatric data available correlates this gene 

with pediatric ALL and AML (Kuiper, van Reijmersdal et al. 2015, Raca, Gurbuxani et al. 

2015).  

In one case, a 471kbp loss was observed in 1q32.1 as the sole aberration detected 

by microarray with normal cytogenetics and FISH (Figure 48).  This loss overlaps the 

protein-coding gene KIF14, identified as an oncogene in a variety of cancers including 

retinoblastoma, lung, breast, and ovarian cancers (Corson, Huang et al. 2005).  KIF14 

functions as a regulator during the cell cycle and interacts with tumorigenic signaling 

pathways and mutations have been linked to cytokinesis failures when mutated (Thériault, 

Corson 2015).  Typically, the genomic aberration of KIF14 is in the form of gains and an 

association with hematopoietic disorders like MDS have yet to be described.  Our results 

conflict with current data, as seen as a loss, yet are noteworthy for future studies as the 

function of KIF14 in MDS is speculated to be fundamentally different then the previously 

described tissue specific activity KIF14.     

PIM1, a proto-oncogene primarily expressed in B-lymphoid and myeloid cells lines 

has an association in hematopoietic malignancies when overexpression occurs (Ouhtit, 

Muzumdar et al. 2015).  This is of particular interest as one case presented a 247kbp loss 

on 6p21.2, resulting in the loss of the PIM1 gene (Figure 35).  This case presented normal 

cytogenetic and FISH results and was a case that also detected an aberration in the 

PRDM16 gene by microarray.  The PIM1 gene belongs to a family of kinases typically 

overexpressed, not inhibited, in tumor cells and the inhibition of PIM1 is currently being 
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studied as a potential drug therapy for hematological cancers (Garcia, Langowski et al. 

2014, Blanco-Aparicio, Carnero 2013).  The presence of this aberration may have a 

relationship with the gain of PRDM16 gene, the aberration also detected by microarray, 

yet data on this co-occurrence has not been described to date.    

The tumor suppressor, LATS1, located on 6q25.1 was detected in one patient with 

a 592kbp loss along with multiple additional aberrations by microarray with normal 

cytogenetics and FISH (Figure 51).  LATS1 helps regulate the cell cycle and apoptosis 

(Xia, Qi et al. 2002).  Mutations of this gene have mainly been found in non-small cell lung 

cancers and mesothelioma (Wan, Sun et al. 2016, Lee 2015).  An association with LATS1 

and MDS is not clear but the apoptotic behavior of this gene leads to a suspicion of an 

involvement in hematopoietic disorders including MDS.  

In one case, multiple aberrations were detected including a 417kbp loss on 8p21.1 

(CLU gene) (Table VI).  The CLU gene, a tumor suppressor, has been implicated in 

pediatric neuroblastoma and more recently as a risk gene in Alzheimer’s disease (Wang, 

Liu et al. 2012, Yang, Li et al. 2016).  The exact role CLU plays in human cancers is still 

under investigation, but roles in apoptosis, proliferation, transformation, and differentiation 

have been documented and more research is needed to determine its place in the genetic 

landscape of MDS.    

A 287kbp loss was observed in 11q22.1, overlapping the YAP1 gene in one case 

with other genetic aberrations by microarray (Figure 45).  YAP1 plays an oncogenic role, 

activates genes involved in cell proliferation, and suppresses apoptotic genes and is a 

gene of interest for this study as studies have shown its expression in hematopoietic stem 

cells and AML (Safari, Movafagh et al. 2014).  Furthermore, YAP1 has been found in cells 

responsible for tumor-repopulation in medulloblastoma in children (Fernandez-L, 
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Northcott et al. 2009).  A consistent expression of YAP1 contributes to the homeostatic 

balance of proliferation and apoptosis in hematopoiesis (Wang, Du et al. 2014).   

A 674kbp loss was detected on 22q12.1 overlapping the CHEK2 gene, a known 

tumor suppressor, in the case that presented inverted 11 by cytogenetic and FISH.  This 

gene is commonly associated with ovarian, breast, and in rare cases pancreatic cancer 

but not typically implicated in MDS (Lawrenson, Iversen et al. 2015, Scelo, McKay et al. 

2014).  Recently, a study found an association with CHEK2 gene alterations being 

association with the development of MPNs including PV (Janiszewska, Bąk et al. 2015).  

This study presents a new player in the molecular mechanisms behind MPNs as they have 

been shown to evolve into MDS and/or AML and hence our detection is noteworthy for 

future studies (Mascarenhas, Mesa et al. 2014). 

Non-Specific Protein Coding Genes:  TAC1, KAT6A, ADAMTS13, PICALM, 

IDO1, and RARA Genes 

TAC1, a gene located on 7q21.3, has been associated with a variety of diseases 

including heart disease, neurodegenerative disease, and more interestingly, has an 

impact on hematopoiesis (Liu, Castillo et al. 2007).  One patient exhibited a 682kbp loss 

overlapping this gene as the only aberration; the cytogenetic and FISH analyses were 

normal (Figure 53).  To date, cases involving pediatric MDS or hematopoietic diseases 

and aberrations of the TAC1 gene are non-existent but with further testing of this young 

group and larger cohorts, a significant contribution may be implied into the role this gene 

plays in the rare pediatric population. 

The protein-coding gene, KAT6A, is located on 8p21.1 and a 400kbp loss 

encompassing this gene was detected in one case along with aberrations of the PICALM 
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and ETS1 genes by microarray (Figure 54). This gene is typically associated with AML, 

specifically containing the translocation with CREBBP, t(8;16); however, this case 

presented normal cytogenetic and FISH findings  (Panagopoulos, Torkildsen et al. 2014).  

Variant gene partners of the KAT6A gene have been determined, some that may be 

cryptic, but the loss of the gene in MDS or more specifically in pediatric MDS has not been 

documented at this time (Saleem, Mohd. Yusoff 2015).   

In one case, a gain approximately 3863kbp in size on 9q34.2 overlapping the 

ADAMTS13 gene.  This gene is known to be involved in thrombocytopenic purpura and 

was observed in addition to other aberrations (Table VII) (Krabbe, Kemna et al. 2015).  

Thrombocytopenia is commonly observed in MDS patients, pediatric and adult (Li, 

Morrone et al. 2015).  

A 471kbp loss in the PICALM gene, located on 11q14.2 was detected in one case 

with normal cytogenetic and FISH findings and additional aberrations detected by 

microarray (Figure 54).  This protein-coding gene is typically observed in Alzheimer’s 

disease (Xu, Tan et al. 2015).  Recently, studies characterized the PICALM gene as a 

regulator in normal hematopoiesis and these studies have begun using PICALM as a 

possible therapeutic target for hematopoietic disorders including PV (Ishikawa, Maeda et 

al. 2015).  A noted loss of function in the pediatric population has yet to be characterized 

but with further research and larger cohorts a better understood role could be established.  

A 454kbp loss was observed in one case in the protein-coding gene IDO1 located 

on chromosome 8p11.21 along with a variety of other aberrations by microarray analysis 

(Figure 51).  This gene has been implicated in a variety of roles including antimicrobial 

and antitumor defense and more importantly, in inflammation (Yeung, Terentis et al. 

2015).  The role this gene plays in pediatric MDS has not been characterized but the 



www.manaraa.com

165 

 

dysregulation of the inflammation signaling pathways have been noted as driving forces 

in the MDS development and should be further studied to help define the pathogenesis of 

MDS.  

In one of the cases, multiple aberrations were detected including a 3542kbp gain 

on 17q21.2 (RARA gene).  The RARA gene is typically observed in patients with APL with 

presentation of the t(15;17) rearrangement (Rose, Haferlach et al. 2015).  This 

rearrangement is readily observed by cytogenetic karyotyping and/or FISH analysis.  At 

the time of specimen intake, the FISH probes specific for RARA were not applied due to 

the initial diagnosis.  Cytogenetic karyotyping did not observe the classical APL 

rearrangements and in fact presented monosomy 7 by karyotype (Table VII).  However, 

current studies have documented the PML/RARA translocation in APL as a cryptic 

anomaly (Gruver, Rogers et al. 2013).   

The use of high-resolution microarray techniques allowed the detection of genetic 

changes in more than half of the cases analyzed that previously were determined normal 

by cytogenetics and FISH.  Multiple genes with known functions are now implicated in 

pediatric MDS based upon this study.  Those of particular importance include the gain of 

the MDS-related PRDM16 gene, and aberrations in IRF4, MYH11, and ALK genes.  The 

lack of genetic characterization is due to the rarity of the disease and this study contributes 

to the limited research available on the genetic landscape of pediatric MDS.   

Comprehensive Testing 

Cytogenetic and FISH testing is considered the gold standard of care for MDS 

patients as it provides accurate diagnostic and prognostic information regarding the 

patient (Haase 2008).  These techniques are essential for determining clonality of the 
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disease and are essential tools in therapeutic stratification (Germing, Aul et al. 2008, 

Costa, Valera et al. 2010).   Since over 50% of MDS cases contain a cytogenetic 

abnormality that is able to be observed by conventional karyotyping or FISH, the continued 

utility of combined testing is necessary (Visconte, Selleri et al. 2014).  The key for 

successful diagnoses and treatment is to determine the entire genetic landscape of MDS.  

The addition of another genetic test that increases the detection of abnormal cases will 

help better define this disease and genetic changes that may have prognostic impact.  

Multiple types of tests are needed in order to effectively observe all potential genomic 

aberrations.  This can be accomplished with combined cytogenetic, FISH, and high-

resolution microarray testing.       

Conventional cytogenetic studies are used as an efficient and rapid test to observe 

hallmark MDS-related abnormalities of -5/del(5q), -7/del(7q), +8, and del(20q).  The 

specificity of FISH probes can result in missed aberrations without concurrent testing of 

the entire genome.  Hence conventional cytogenetics is useful.  The use of FISH will allow 

the detection of aberrations even when mitotic index is low, especially where conventional 

karyotyping will not be effective.  This is most useful when the initial specimen is limited 

or compromised.  Fluorescence in situ hybridization allows for the detection of low 

mosaicism aberrations not observed by karyotype because more number of cells are 

scored.  As observed in two pediatric cases studied (Figures 36 and 52), a deletion of 20q 

was only observed using FISH testing due to being detected in low frequencies of 

interphase cells [8% and 13%].  As depicted in Table IX, out of the 76 abnormal 

pediatric/young adult samples over the given time span, 10.5% (8 / 76) contained one of 

the hallmark MDS abnormalities detected by FISH studies alone.  Cytogenetic karyotyping 

from these cases presented normal findings.  Furthermore, two cases detected trisomy 21 

by cytogenetic karyotyping only with normal FISH results due to the specific nature of the 
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probes utilized in the FISH panel.  The use of concurrent cytogenetic karyotyping and 

FISH testing allowed for the accurate detection of genetic aberrations in 13.1% of the total 

number of abnormal pediatric and young adult samples studied in this laboratory from 

1990 to 2015.    

  This study determined the impact of a more comprehensive analysis by the 

addition of higher-resolution microarray testing on this rare population of MDS.   From the 

28 cases that utilized comprehensive testing, an abnormality was detected in 60.7% (17 / 

28) cases by karyotyping, FISH, and/or microarray analyses (Table X).  The use of 

microarray was able to detect copy number gains, losses, or LOH in 33 pathogenic genes 

in 15 of the 28 cases (33%) (Table V).  A notable finding from this study presented that 

the majority of the abnormal microarray cases presented normal karyotype and FISH 

analyses with 11 cases (73%) (Figure 57).   However, among the 27% (4 cases) with 

abnormal cytogenetic/FISH findings, the aberrations were not detected by microarray.  In 

case 5, the deletion of 20q was only observed in 13% of interphase cells by FISH and was 

below the detection rate of microarray.  In three cases that presented monosomy 7 by 

cytogenetic karyotyping and FISH analyses, the percentage of mosaicism was fewer than 

the detection rate or very close to the validated rate.  These findings emphasize the need 

for continued karyotyping and FISH testing in order to detect low frequency mosaicisms.  

In order to detect all prognostically relevant gene aberrations, a comprehensive study 

using multiple techniques is crucial.    
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Summary  

The purpose of this study was to decipher the genetic landscape in the pediatric MDS 

population.   Using the available, yet limited, information regarding this rare group we were 

able to shed light on key differences and similarities between adult and pediatric MDS.   

The results from the present study helps to better understand the specific genetic changes 

among pediatric/young adult MDS cases; clinical correlations may consequently aid in 

development of treatments tailored specifically for this age group of MDS cases.  The 

results of this study included: 

1) A confirmation of the rarity of MDS in the pediatric and young adult populations by 

presentation of a total of 306 pediatric or young adult MDS specimens, constituting 

7.6% of the total MDS samples, received into our laboratory from 1990-2015. 

2) The frequency of pediatric MDS has typically been reported to occur in males and 

females equally, however, this study found a frequency more comparable to the 

adult MDS data showing males have a slightly higher occurrence [65 (55%) males 

to 54 (45%) females].   

3) The median age of pediatric/young adult MDS is 6 years according to this study 

which is slightly lower than the current literature documenting a median age 

between 6.8 and 10.7 years for pediatric MDS.  This study also determined the 

highest occurrence of pediatric MDS during the first year of life. 

4) This study supports the current literature showing the most common MDS-

associated chromosome abnormality is -5/del(5q) in the adult MDS population 

(30%), with our findings at 33% of the cytogenetically abnormal adult MDS 

samples (519 / 1563).   Documented studies have shown -7/del(7q) is the next 

most frequent cytogenetic abnormality (15-25%), followed by +8 (16%), and 
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del(20q) (10-20%).    Our results detected -7/del(7q) at 27% (423 / 1563); +8 in 

18% (282 / 1563); and del(20q) in 16% (260 / 1563) of our subset of abnormal 

adult MDS samples from 1990-2015.   

5) These results provide evidence that the occurrence of cytogenetic aberrations 

observed in the young MDS population is not as high as 30-50% as previously 

documented, as this study found an aberration in 76 of the 306 pediatric or young 

adult samples (24.8%).   

6) The occurrence of hallmark MDS-related abnormalities are observed in different 

frequencies in comparison to the elderly population.  The most frequent 

abnormality in our study was -7/del(7q) in 36.8% of the samples (8 / 76) which is 

higher than the limited published information showing this aberration in 30% of 

pediatric and young adult MDS patients.  The next most frequent abnormality 

observed in this study was +8 in 17.1% (13 / 76) followed by del(20q) in 13.2% (10 

/ 76).  The -5/del(5q), the most common abnormality in the adult population, was 

observed at a frequency of 10.5% (8 / 76) from our cohort of young MDS 

specimens, thus adding and confirming to the very limited genetic information 

available in the young MDS cases.   

7) The results from this study prove that the use of higher-resolution techniques can 

aid in the detection of genetic aberrations among cases with normal conventional 

cytogenetics and FISH analyses.  Genetic aberrations in 33 genes were observed 

in over 58% (15 cases) of the pediatric and young adult samples tested using 

microarray; the majority of these cases (73%; 11 / 15 cases) presented normal 

cytogenetic and FISH results.   

8) The use of microarray detailed 33 genes of potential interest for pediatric and 

young adult MDS patients.  The functions of these genes include tumor 



www.manaraa.com

171 

 

suppressors, oncogenes and cell cycle regulators as well as disease specific 

genes including MDS, AML, ALL, NHL, and CML.  The following genes exhibited 

copy number changes in more than one case: PRDM16, IRF4, MYH11, ALK, 

CDKN2B, PAX5, EXT2, and ERCC4.  

9) Most importantly, a copy number gain in the MDS-related PRDM16 gene was 

detected in six cases (6 / 26; 23%) with microarray.  This is a new and important 

finding.  This is a unique and novel finding for the pediatric and young adult MDS 

population.   

10) The results from this study prove the importance of comprehensive testing utilizing 

cytogenetic karyotyping, FISH, and microarray techniques in distinguishing the 

most accurate genetic landscape of pediatric MDS.  Our study helped to detect an 

abnormality in 60.7% (17 / 28) of the cases by combined use of conventional 

cytogenetics, FISH, and/or microarray analyses and each technique proved to be 

beneficial in its own right.   

Future Directions 

Over 50% of MDS cases present with normal karyotypes by conventional 

cytogenetics; mainly because abnormal clones existing in low frequency may go 

undetected by conventional cytogenetic studies.  These cases fall into a ‘Good’ IPSS 

category.  Genomic imbalances may be present, however, these aberrations can only be 

determined with more sensitive studies (Papaemmanuil, Gerstung et al. 2013, Bejar, 

Stevenson et al. 2011, Bejar 2014). Fluorescence in situ hybridization techniques, which 

is more sensitive, determines only those alterations for which the probes are used.  The 

addition of a more sensitive microarray study may facilitate the detection of cryptic 

abnormalities and may be helpful in determining genomic imbalances.  From the 26 cases 
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that were available for microarray analysis, over half contained genomic aberrations not 

observed by cytogenetic karyotyping or FISH.  We observed multiple patterns of genetic 

alterations in this group of patients and in order to determine those that are prognostically 

important, future studies utilizing a larger cohort of pediatric MDS are warranted.  The 

implications of aberrations in PRDM16, IRF4, MYH11, ALK, CDKN2B, PAX5, EXT2, and 

ERCC4, genes of particular interest since these were altered in more than two cases, 

have the potential to disrupt normal hematopoiesis.  Our present study provides insight 

into the limited information available for the pediatric MDS population. 

Currently, the NCCN guidelines provide information on the most up to date 

treatments for practical use including the risk/benefit and financial cost strategies in 

regards to the patient outcome, adverse events, quality of life and financial burdens 

(Greenberg 2015).  In order to determine the entire global mutational landscape of 

pediatric MDS, continued efforts need to be made in determining how best to combine 

clinical and genetic information and apply this information in the clinical practice.  A more 

thorough study including cytogenetic karyotyping in conjunction with FISH paired with 

higher resolution microarray studies could determine the most accurate genetic makeup 

of these patients.  We observed genomic aberrations in more than half of the cases that 

presented normal cytogenetic and FISH findings.  Furthermore, due to the inability to 

detect low mosaicism by microarray, the continued use of cytogenetics and FISH is crucial 

for the most comprehensive study for these patients.  Current studies have begun using 

higher sensitive tests including next generation sequencing to detect mutations within 

select nucleotide sequences.  The future of genetic testing should not be limited to 

conventional techniques.  With more information using combined testing and more 

accurate data better clinical correlations can be performed which in turn will facilitate 

therapeutic stratification tailored for this rare group of MDS.   
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The results from this study will supplement the very limited information available 

for pediatric MDS.  Further microarray testing needs to be performed on a larger subset 

of pediatric MDS specimens to determine the true incidences of the genomic alterations, 

specifically PRDM16.  Future testing using sequencing assays will provide a more 

thorough analysis on the current cases and for future patients.  This research has 

presented novel findings and has better characterized the genetic landscape in pediatric 

MDS.   
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Appendix A.  Reagent names and manufacturers 

 

Reagent Manufacturer 

Chang Medium BMC® Irvine Scientific, Irvine, CA 

Colcemid® Irvine Scientific, Irvine, CA 

1XTrypsin-EDTA Irvine Scientific, Irvine, CA 

Methyl Alcohol Mallinckrodt Pharmaceutical 

Glacial Acetic Acid Mallinckrodt Pharmaceutical 

Hanks Balanced Salt Solution Irvine Scientific, Irvine, CA 

Wright's Stock Solution Sigma-Aldrich, St. Louis, MO 

6.8 Gurr's Buffer BDH Laboratory, Poole, England 

LSI® EGR-1 (5q31) DNA Probe Abbott-Vysis, Abbott Park, IL 

D5S23, D5S721 (5p15.2) DNA Probe Abbott-Vysis, Abbott Park, IL 

D7S486 (7q31) DNA Probe Abbott-Vysis, Abbott Park, IL 

CEP 7(D7Z1) DNA Probe Abbott-Vysis, Abbott Park, IL 

LSI® D20S108 (2oq12) DNA Probe Abbott-Vysis, Abbott Park, IL 
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Cytocell Del(20q) Deletion Probe Cytocell, Cambridge, UK 

CEP 8 (D8Z1) DNA Probe Abbott-Vysis, Abbott Park, IL 

0.4% Sodium Chloride and Sodium 

Citrate (SSC) 

Sigma-Aldrich, St. Louis, MO 

0.3% Nonidet P-40 (NP-40) Abbott-Vysis, Abbott Park, IL 

4,6-diamidino-2-phenylindole (DAPI II) in 

Antifade Solution 

Abbott-Vysis, Abbott Park, IL 

CytoScan® Nuclease-Free Water Affymetrix, Santa Clara, CA 

CytoScan® 10X Nsp I Buffer Affymetrix, Santa Clara, CA 

CytoScan® 100X BSA Affymetrix, Santa Clara, CA 

CytoScan® Nsp I Enzyme Affymetrix, Santa Clara, CA 

CytoScan® 10X T4 DNA Ligase Buffer Affymetrix, Santa Clara, CA 

CytoScan® 50µM Nsp I Adaptor Affymetrix, Santa Clara, CA 

CytoScan® T4 DNA Ligase Affymetrix, Santa Clara, CA 

10X Titanium™ Taq PCR Buffer Clontech Laboratories, Takara Bio 

Company, Mountain View, CA 

GC-Melt Reagent Clontech Laboratories, Takara Bio 

Company, Mountain View, CA 
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dNTP Mixture (2.5mM each) Clontech Laboratories, Takara Bio 

Company, Mountain View, CA 

PCR Primer (002) Clontech Laboratories, Takara Bio 

Company, Mountain View, CA 

50X Titanium™ Taq DNA Polymerase Clontech Laboratories, Takara Bio 

Company, Mountain View, CA 

2% TBE Precast Gel Lonza Group LTD, Switzerland 

1% TBE Precast Gel Lonza Group LTD, Switzerland 

USB PCR Marker 50-2000bp Ladder Affymetrix, Santa Clara, CA 

CytoScan® Purification Beads Affymetrix, Santa Clara, CA 

CytoScan® Purification Wash Buffer Affymetrix, Santa Clara, CA 

CytoScan® Elution Buffer Affymetrix, Santa Clara, CA 

CytoScan® 10X Fragmentation Buffer Affymetrix, Santa Clara, CA 

CytoScan® Fragmentation Reagent Affymetrix, Santa Clara, CA 

TrackIt™ 25bp DNA Ladder Life Technologies, Carlsbad, CA 

CytoScan® 5X TdT Buffer Affymetrix, Santa Clara, CA 

CytoScan® 30mM DNA Labeling 

Reagent 

Affymetrix, Santa Clara, CA 
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CytoScan® TdT Enzyme Affymetrix, Santa Clara, CA 

CytoScan® Hyb Buffer Part 1 Affymetrix, Santa Clara, CA 

CytoScan® Hyb Buffer Part 2 Affymetrix, Santa Clara, CA 

CytoScan® Hyb Buffer Part 3 Affymetrix, Santa Clara, CA 

CytoScan® Hyb Buffer Part 4 Affymetrix, Santa Clara, CA 

CytoScan® Oligo Control Reagent 0100 Affymetrix, Santa Clara, CA 

GeneChip® Wash A Affymetrix, Santa Clara, CA 

GeneChip® Wash B Affymetrix, Santa Clara, CA 

GeneChip® Stain Buffer 1 Affymetrix, Santa Clara, CA 

GeneChip® Stain Buffer 2 Affymetrix, Santa Clara, CA 

GeneChip® Array Holding Buffer Affymetrix, Santa Clara, CA 

OncoScan® Somatic Mutation Probe 

Mix 1.0 

Affymetrix, Santa Clara, CA 

OncoScan® Copy Number Probe Mix 

1.0 

Affymetrix, Santa Clara, CA 

OncoScan® Positive Control Affymetrix, Santa Clara, CA 

OncoScan® Negative Control Affymetrix, Santa Clara, CA 
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OncoScan® Buffer A Affymetrix, Santa Clara, CA 

OncoScan® dNTPs (A/T) Affymetrix, Santa Clara, CA 

OncoScan® dNTPSs (G/C) Affymetrix, Santa Clara, CA 

OncoScan® SAP, Recombinant (1U/uL) Affymetrix, Santa Clara, CA 

OncoScan® Gap Fill Enzyme Mix Affymetrix, Santa Clara, CA 

OncoScan® Cleavage Buffer Affymetrix, Santa Clara, CA 

OncoScan® Cleavage Enzyme Affymetrix, Santa Clara, CA 

OncoScan® PCR Mix Affymetrix, Santa Clara, CA 

OncoScan® Taq Polymerase Affymetrix, Santa Clara, CA 

OncoScan® Buffer B Affymetrix, Santa Clara, CA 

OncoScan® HaeIII Enzyme Affymetrix, Santa Clara, CA 

OncoScan® Exonuclease I Affymetrix, Santa Clara, CA 

3% TBE Precast Gel Lonza Group LTD, Switzerland 

NEB Low Molecular Weight Ladder New England Biolabs, Ipswich, 

Massachusetts 

OncoScan® Hybridization Mix Affymetrix, Santa Clara, CA 
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Appendix B.  Equipment product names and manufacturers 

 

Equipment/Supplies Manufacturer 

Thermatron Drying Chamber CDS-5® Venturedyne, Ltd., Holland, MI 

HYBrite™ Abbott-Vysis, Abbott Park, IL 

ThermoBrite™ Abbott-Vysis, Abbott Park, IL 

QIAcube® Automated Robot Qiagen, Redwood City, CA 

Qubit 3.0™ Fluorometer Instrument ThermoFisher Scientific, Waltham, MA 

GeneChip® Scanner 3000 7G Affymetrix, Santa Clara, CA 

GeneAmp™ PCR System 9700 Applied Biosystems, Waltham, MA 

MagnaRack Magnetic Stand Life Technologies, Carlsbad, CA 

NanoDrop® Spectrophotometer ND-1000 NanoDrop Technologies, Inc, Wilmington, 

DE 

1/2" Microtube Tough-Spots Diversified Biotech, Boston, MA 

GeneChip® Fluidics Station 450 Affymetrix, Santa Clara, CA 
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Appendix C.  Software product name and manufacturers 

Software Manufacturer 

CytoVision® Image Analysis System Leica Biosystems, Buffalo Grove, 

IL 

Chromosome Analysis Suite (ChAS) Software Affymetrix, Santa Clara, CA 

GeneChip® Command Center® 3.2 Affymetrix, Santa Clara, CA 
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